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Abstract

We explore the asset pricing implication of commodity tail risk in the cross

section of Chinese stock returns. A commodity tail risk index is constructed by

aggregating individual commodity’s exposure to left-tail realizations of systematic

risks. We obtain the commodity tail risk beta for each stock between 2005 to

2022 and find that the risk-adjusted return differential between stocks with extreme

loadings of past commodity tail risk is 1.39% per month and significant at the 1%

level, which cannot be explained by common risk factors or stock characteristics. We

rationalize our findings by showing that a high level of commodity tail risk captures

bad state of the world and signals adverse economic conditions, thus a low risk

premium for stocks that hedge this tail risk. Our study highlights the informational

role of commodity futures prices and sheds new light on the link between commodity

and equity markets in China.

JEL classification : C58; G11; G12

Keywords : Commodity futures; Nonlinear tail dependence; Tail risk; Cross section of

equity returns; Economic conditions.

∗Nottingham University Business School China, University of Nottingham Ningbo China. Email:
zhenyu.lu@nottingham.edu.cn.

†Nottingham University Business School China, University of Nottingham Ningbo China. Email:
ying.jiang@nottingham.edu.cn.

‡Corresponding author. Nottingham University Business School China, University of Nottingham
Ningbo China. Email: xiaoquan.liu@nottingham.edu.cn.

1



1 Introduction

In this study, we examine the impact of commodity tail risk on the pricing of cross-

sectional stock returns. The evidence in the existing literature suggests two channels

through which the commodity tail risk explains the cross section of stock returns. First,

fluctuations in commodity futures prices serve as key indicators for the economic out-

look (Driesprong et al., 2008; Fernandez-Perez et al., 2017; Jacobsen et al., 2019; Sockin

& Xiong, 2015).1 Nowadays, centralized trading of commodity futures aggregates use-

ful information from market participants, including commercial hedgers and financial

investors, to jointly form expectations on future economic outlook and facilitate price

discovery (Garbade & Silber, 1983; Sockin & Xiong, 2015), which contain valuable in-

formation with pricing implication for the stock market.2 In addition, commodities are

important ingredients and outputs for both users and producers in the whole production

chain. Equity and commodity returns are thus naturally and closely related as price

changes in commodities ultimately affect the profitability and cash flows of individual

firms (Brooks et al., 2016). Hence, there is ample evidence in the literature that variables

in commodity futures markets are useful for predicting stock returns or the business cycle

(Bakshi et al., 2012, 2019; Hong & Yogo, 2012; Jacobsen et al., 2019; Ready, 2018), and

that commodity futures risk factors are priced in the cross section of equity returns (Boons

et al., 2014; Brooks et al., 2016; Fernandez-Perez et al., 2017; Hou & Szymanowska, 2013).

The commodity futures tail risk, a measure of extreme left-tail realization, naturally

reflects a pessimistic economic outlook and indicates rare but severe economy downturn

with deteriorations in consumption and investment opportunities for investors (Ge &

Tang, 2020; Hu & Xiong, 2013; Sockin & Xiong, 2015). Meanwhile, left-tail realizations of

equity returns and dividend growth are also associated with negative extreme realizations

of consumption in bad states of the economy (Schreindorfer, 2020). Hence, the commodity

futures tail risk, through its informational role describing economic state, may be linked to
1 These two markets are also linked through the spillover of returns, volatility, and higher-order

moments (Ahmed & Huo, 2021; Zhang et al., 2023).
2 The literature also highlights the information generation role of derivatives markets and their relation

to the equity market (see Gu et al., 2022; Xing et al., 2010; Zhang et al., 2022, for instance). Saurav et
al. (2023) and Wang & Yen (2018) focus on the left-tail risk.
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the tail risk of equity markets. As risk averse investors demand additional compensation

for holding assets with greater equity tail risk (Ang, Chen, & Xing, 2006; Bollerslev et

al., 2022; Chabi-Yo et al., 2018, 2022; Kelly & Jiang, 2014), the commodity tail risk could

exhibit a pricing impact by signaling overall bad state of the economy in the near future.

Motivated by the above strands of the literature, we focus on the commodity tail

risk in this study and explore how extreme negative realizations of commodity prices

impact stock returns. Such negative realizations may reflect adverse expectation for

future commodity demand and supply, as well as the underlying economic fundamentals.3

Our empirical analyses are conducted based on the Chinese commodity futures and

equity markets. Several characteristics stand out to make them interesting test markets

for our research question. For the Chinese commodity futures market, despite a rapidly

growing variety of products, increased trading volume, and enhanced market quality over

the past few decades (Cai et al., 2020; Jiang et al., 2020; Tang & Zhu, 2016), the institu-

tional environment means that the market is relatively poorly understood (Bianchi et al.,

2021) with tight policy control and a significant barrier-to-entry for foreign institutional

investors (Fan & Zhang, 2020). Thus it is not all that clear whether commodity futures

prices in China are as informative as those in the developed futures markets. At the same

time, the Chinese stock market, also on the receiving end of frequent policy changes, is

known to be disconnected from the macroeconomy exhibiting historically low correlations

between its returns and the GDP growth (Allen et al., 2023). Hence, it would be inter-

esting to examine whether the consumption and price-related information contained in

commodity futures prices (Erb & Harvey, 2006; Hou & Szymanowska, 2013) is able to

impact equity prices.

Empirically, our measure of commodity tail risk follows Chabi-Yo et al. (2022), which

argue that each stock’s exposure to tail risk can be driven by systematic risk factors in

addition to the market risk, thus a multivariate measure of risk better explains the cross

section of stock returns. The multivariate setting in Chabi-Yo et al. (2022) lends itself

naturally to our research question, as a single left-tail event for commodity futures con-
3 We recognize that the upper-tail risk in commodity futures markets may also impact equity prices.

However, our study aims at investigating the comovement between commodity and equity markets in
bad market states and characterizing the crash aversion of investors. Hence our analysis focuses on the
left-tail realizations in commodity futures market.
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tracts cannot adequately describe the extreme adverse conditions in the market or reflect

the widespread deterioration in the economy. Hence, we define a multivariate tail event

in a commodity futures contract as the conditional probability of a contract’s left-tail

extreme realization given that at least one of the systematic factors simultaneously real-

izes a left-tail extreme event, and the multivariate tail index aggregates this information

across all futures contracts.

This multivariate tail risk framework fits in well with the burgeoning literature that

adopts linear factor models to price the cross section of commodity futures returns (see

Bakshi et al., 2019; Szymanowska et al., 2014; Yang, 2013, for example). We measure the

commodity tail risk with respect to factors in these pricing models, including the com-

modity market, basis, commodity momentum, and basis-momentum factors, all of which

are theoretically motivated with empirical support. First, based on the theory of storage

linking implicit benefits received by inventory holders to the slope of futures curve, the

basis reveals an abundant or scarce state of physical inventory thus leading to a premium

for the basis factor in commodity futures (Brennan, 1958; Erb & Harvey, 2006; Gorton

et al., 2012; Working, 1949). Second, Miffre & Rallis (2007) motivate the commodity

momentum factor through the theory of normal backwardation and Bakshi et al. (2019)

rationalize the sizeable returns to the commodity momentum factor based on the trading

behavior of speculators.4 Finally, the basis-momentum factor is related to the imbalance

between the supply and demand of futures contracts and the market-clearing ability of

financial intermediaries and speculators, and shown to be a strong return predictor in

the U.S. markets (Boons & Prado, 2019). Together with the commodity market factor,

these systematic commodity risk factors capture distinct information of market condi-

tions, are shown to generate significant returns in China empirically (Bianchi et al., 2021;

Fan & Zhang, 2020), thus they are natural candidates from which we extract our mul-

tivariate tail risk measure. Interestingly, we find that these commodity risk factors are

individually priced in the Chinese equity markets, consistent with evidence from the US

markets (Brooks et al., 2016; Fernandez-Perez et al., 2017). This highlights the intricate
4 Fernandez-Perez et al. (2017) show that backwardation and contango state variables constructed

based on the basis and commodity momentum factor-mimicking portfolios are informative about future
changes in investment opportunities and the business cycle.
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link between commodity futures and equity markets and lends further motivation for our

study.

We construct the commodity multivariate tail risk measure based on 65 commodity

futures contracts traded in three Chinese futures exchanges from January 2003 to October

2022. Each month, we calculate each commodity’s multivariate tail risk measure with

respect to the four factors mentioned above at the 5% probability level on the left tail with

a rolling window of 250 days. Since the input data are daily, it is necessary to consider

the volatility clustering effect thus we combine the parametric GARCH(1,1) model with

a non-parametric copula-based modelling approach. We then take the equally-weighted

cross-sectional average tail risk of individual commodity futures to form the aggregated

multivariate commodity tail risk measure on a monthly basis.

For each stock listed in the Shanghai and Shenzhen Stock Exchanges, we run monthly

predictive regressions of excess stock returns on the aggregate multivariate commodity

tail risk index to obtain the tail risk beta. In the univariate portfolio analysis, we find that

the return difference between extreme portfolios with the highest and lowest commodity

tail risk beta is economically large and statistically significant. In particular, the risk-

adjusted return spread between extreme portfolios is 1.39% per month with a t-statistic

of 3.27 based on the Fama-French 5-factor model. This translates to an annualized re-

turn of 16.7%. In the bivariate portfolio analysis, we control for a number of popular

cross-sectional equity return predictors and show that the positive relation between com-

modity tail risk beta and one-month-ahead stock returns remains robust and statistically

significant. We obtain consistent results in the Fama & MacBeth (1973) regressions when

we simultaneously control popular predictive factors and firm characteristics. Additional

robustness check corroborates the baseline findings.

To understand the economic mechanism behind the predictability of our multivariate

commodity tail risk measure, we relate the commodity tail risk measure to the macroe-

conomy. Commodities naturally capture consumption and price-related information as

they directly link to the aggregate consumption level and are able to hedge inflation

risk (Boons et al., 2014; Erb & Harvey, 2006; Hou & Szymanowska, 2013). Commod-

ity futures prices also reflect the market’s consensus with regard to the outlook of the
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macroeconomy. Hence, the channel through which the commodity tail risk impacts cross-

sectional stock returns could be via its relation with the macroeconomic conditions and

economic outlook. We estimate an ARMA model to test this conjecture and find that

a positive commodity tail risk shock is associated with a considerable decline in infla-

tion, price levels, and industrial production. Such deterioration of economic condition

is further verified by producer and consumer’s worsening economic outlook. It indicates

that an increase in commodity tail risk captures high marginal utility periods and reflects

increasing concern by investors about the future economic outcomes in real terms, thus

reducing their consumption demands.

In addition, we examine whether our commodity tail risk index is linked to the equity

tail risk, as extreme negative realizations in commodity futures may indicate a severe

situation in the state of economy potentially captured by the equity left-tail risk. We

find that two stock market tail risk measures, proxied by the Value-at-Risk and expected

shortfall, are positively associated with each other, and predated by the commodity tail

risk. This result indicates that the commodity tail risk indeed signals the equity tail risk,

which has been documented as a priced risk in cross-sectional equity returns.

These results collaborate our findings in the asset pricing tests, i.e., investors require

additional compensation in the form of higher expected returns for holding stocks with

greater predictive loading of the commodity tail risk. Meanwhile, stocks with lower pre-

dictive loading of the commodity tail risk are considered safer at times of high commodity

tail risk and serve as effective hedges. Investors are willing to pay a premium for these

stocks. The analysis of the economic mechanism underscores the role of commodity tail

risk in signaling future economic activities and determining equilibrium asset prices.

By focusing on the extreme left-tail events in commodity futures markets, our paper

contributes to the literature by uncovering another important link between commodity

futures and equity markets. This also distinguishes our work from existing studies such

as Fernandez-Perez et al. (2017) and Brooks et al. (2016) which focus on the entire

distribution of commodity futures returns and the pricing of commodity risk factors in

equity markets. More importantly, our study sheds light on the distinct information

contained in the commodity tail risk, which captures the market’s expectation of future
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macroeconomic prospect. The stock return predictability is a natural manifestation of

this information.

The rest of this paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 describes the data and outlines the methodology. In Sections 4 and 5, we analyze

empirical results and discuss the underlying economic mechanism, respectively. Section

6 provides robustness check. Finally, Section 7 concludes.

2 Related literature

Informational content of commodity futures markets – Variables in commodity mar-

kets serve as barometers of future economic conditions as they contain valuable informa-

tion regarding the supply and demand of resources needed for the real economy. This

information is shown to possess predictive ability for stock market returns (Bakshi et

al., 2012, 2019; Hu & Xiong, 2013; Jacobsen et al., 2019; Ready, 2018; Sockin & Xiong,

2015). For instance, Hong & Yogo (2012) argue that movements in open interest are

pro-cyclical and exhibit predictive power for economic activities and asset prices. More

recently, Bakshi et al. (2019) regard the carry factor in commodity markets as an indica-

tor for changes in the future investment opportunity set for investors with intertemporal

hedging demand; and Jacobsen et al. (2019) show that price changes in industrial metal

futures predict stock returns with rising futures prices indicating subsequent economic

growth.

The predictive ability of commodity variables is also manifested in estimating the risk

premia for the cross section of equities, highlighting a close interplay between the two

markets and a directional information flow from the commodity to equity markets (Boons

et al., 2014; Brooks et al., 2016; Fernandez-Perez et al., 2017). For example, Brooks et al.

(2016) find that commodity risks are priced in the cross section of global equity returns.

Under the framework of intertemporal capital asset pricing model, Fernandez-Perez et

al. (2017) argue that commodity risk factors characterizing backwardation and contango

phases are state variables in predicting return distributions and possessing long-term

predictability for the aggregate stock market returns.

Given the strong theoretical and empirical evidence discussed in these studies, we are
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interested in exploring whether information contained in extreme negative realizations of

commodity markets, which captures the likelihood of downside events, has implication for

predicting equity returns as investors care about adverse economic outcomes. Our study

extends this strand of the literature by focusing on the information content of extreme

tail events in commodity futures markets.

Tail risk and its asset pricing role – Our study also speaks to the literature on tail

events in rare disaster models and downside risk. The seminal paper of Roy (1952) intro-

duces the concept of safety first and argues that risk-averse investors care asymmetrically

about downside and upside events. In particular, agents place greater weight on adverse

outcomes than gains in their utility function (Arzac & Bawa, 1977; Bawa & Lindenberg,

1977; Gul, 1991).5 Hence, the occurrence of heavy left-tail events implies a risk premium.

Based on heavy-tailed shocks to economic fundamentals, rare disaster risk models ratio-

nalize a number of asset pricing anomalies (Barro, 2006; Farhi & Gabaix, 2016; Gabaix,

2012; Rietz, 1988; Wachter, 2013). For instance, Barro (2006) develops a rare economic

disaster risk model to reconcile the equity premium puzzle, which is extended to a dy-

namic setting in Gabaix (2012) and Wachter (2013). The rare disaster risk models also

enjoy growing empirical support (Baron et al., 2023; Bollerslev & Todorov, 2011; Fan

et al., 2022; Kelly & Jiang, 2014; Manela & Moreira, 2017). For example, Bollerslev

& Todorov (2011) find that the time-varying compensation for rare disaster-type events

explains a large fraction of equity and variance risk premia.

Closely related to these studies, the tail risk measurement and its asset pricing im-

plication for stock returns are also an active research field. A large number of univariate

tail risk measures (Atilgan et al., 2020; Chang et al., 2013; Chollete & Lu, 2011; Harvey

& Siddique, 2000; Jang & Kang, 2019; Jondeau et al., 2019) and bivariate crash risk in-

dicators (Ang, Chen, & Xing, 2006; Bollerslev et al., 2015; Chabi-Yo et al., 2018; Farago

& Tédongap, 2018; Kelly & Jiang, 2014; Lu & Murray, 2019; Weller, 2019) have been

developed in the literature. Fan et al. (2022) document substantial pricing implication of

the equity tail risk in the foreign exchange markets. These studies highlight the role of

systematic tail risk in explaining asset returns, equity risk premia, and market volatility.
5 In behavioral finance, the prospect theory of Kahneman & Tversky (1979) also demonstrates that

investors exhibit loss aversion preferences.
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Compared with the tail risk inferred from equity markets, the tail risk obtained from

derivatives markets has received less attention with the exception of Ammann et al.

(2023). In our study, we measure the tail risk from commodity futures markets in a mul-

tivariate setting and exploit extreme downside realizations of a wide range of systematic

commodity risk factors. Our measure follows Chabi-Yo et al. (2022), which defines the

multivariate crash measure for an individual stock as the conditional probability of a

stock’s left-tail extreme realization given that at least one of multiple systematic factors

simultaneously realizes a left-tail extreme event. This definition is built upon the intu-

ition that investors are aware of disaster states driven by joint tail events of multiple risk

factors. We implement this novel measure of tail risk in commodity futures markets and

examine its impact on cross-sectional stock returns.

3 Data and variables

3.1 Data

For commodity futures contracts, we collect daily settlement prices (in RMB), open

interest, and trading volume of 67 commodity futures with all available maturities traded

in the Shanghai Futures Exchange (SHFE), Dalian Commodity Exchange (DCE), and

Zhengzhou Commodity Exchange (ZCE) from the China Stock Market & Accounting

Research (CSMAR) database. To ensure a sufficient number of commodities are available

for constructing long-short portfolios, we require that the number of traded contracts

in the cross section is larger than eight following Li et al. (2017). We retain delisted

contracts such as Early rice and Hard wheat to avoid survivorship bias (Xu & Wang,

2021) but remove thinly traded contracts such as Green mung. The final unbalanced

sample contains 65 commodities from January 2003 to October 2022.

We choose the third-nearest contracts to construct continuous time series as they are

the most liquid (Fan & Zhang, 2020; Jiang et al., 2017). The contracts are rolled over

on the last trading day before the front month and a price multiplier is applied in the

rollover to avoid price jumps (Han & Kong, 2022; Li et al., 2017). Table A.1 summarizes

descriptive statistics for the commodity futures contracts in our sample.
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Our equity sample includes all A-listed stocks traded in the Shanghai and Shenzhen

stock exchanges from January 2005 to October 2022. We collect firm-level daily and

monthly data for returns, trading volume, shares outstanding, and accounting variables

from the WIND database. To mitigate the impact of extreme price movement and illiq-

uidity due to the IPO effect, we remove stock data within six months of the IPO. We

require at least 72 available monthly observations for a stock to be included in the sam-

ple. In addition, we collect monthly excess returns on the market (MKT), size (SMB),

value (HML), profitability (RMW), investment (CMA), and momentum (UMD) factors.

The aggregate stock market is represented by the Shanghai Stock Exchange Compos-

ite (SSEC) index. The risk-free rate used is the one-year deposit rate. These data are

obtained from the CSMAR.

3.2 Multivariate tail risk

We follow Chabi-Yo et al. (2022) to construct the multivariate tail risk measure

(MTail) as follows:

MTailXi := P [Tp [Ri] | Tp[X]] = P

[
Ri ≤ Qp [Ri] |

N⋃
j=1

{Xj ≤ Qp [Xj]}

]
, (1)

where Ri denotes returns of each asset i and X = (X1, ..., XN)′ is a vector of returns of

N priced risk factors. We define tail events as extreme realizations of Ri by Tp[Ri] :=

{Y ≤ Qp[Ri]} with Qp[Ri] := sup{P[Ri ≤ ri] ≤ p}, indicating the upper p-quantile of Ri.

Likewise, Tp[X] =
⋃N
j=1 {Xj ≤ Qp [Xj]} stands for the multivariate tail events defined as

the union of tail events realized by individual priced factors (X). That is, at least one

of these risk factors does not exceed its corresponding p-quantile.

In Equation (1), P [Tp [Ri] | Tp[X]] implies the conditional probability that asset i

realizes tail events given that at least one of these priced factors takes on an extreme

realization at or below its p-quantile. Hence, MTail refers to the likelihood of left-tail

extreme events realized by asset i conditional on a tail event induced by one or more

systematic risk factors simultaneously. The value of MTail tends to be high (low) if asset

i is more (less) likely to be adversely influenced by extreme realizations of systematic risk

factors, indicating higher (lower) tail dependence of a given joint distribution.
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To obtain the MTail for each asset (futures) i in month t, we specify a rolling window

with the most recent 250 trading days to ensure sufficient observations and stable esti-

mates (Ang & Chen, 2002). We further exclude missing values of each series and require

each asset i to have at least 200 non-zero daily returns over the rolling window estima-

tion period.6 We apply the GARCH(1,1) model with skewed-t innovations to characterize

marginal return distributions. We then conduct probability integral transforms of daily

futures return series and factor return series to obtain marginal cumulative distribution

functions. Finally, we implement a non-parametric copula approach and generate the

conditional probability for the transformed returns as the multivariate tail risk measure

given in Equation (1) for each commodity in each month.7 Detailed estimation proce-

dure is summarized in Appendix A.8 We construct MTail with respect to four popular

commodity risk factors, i.e., the commodity market factor (CMKT), basis factor (Ba-

sis), momentum factor (CMOM), and basis-momentum factor (Basis-Mom). Details of

constructing these commodity risk factors are provided in Appendix B.

Figure 1 shows the aggregate multivariate commodity tail risk (MTail), constructed

by averaging MTail estimates across individual futures contracts in month t with equal

weights. We observe that the aggregate MTail is highly serially autocorrelated with a

first-order autocorrelation of 0.95. It exhibits spikes and is more dispersed between 2008

to 2010 capturing the onset of the global financial crisis and recession. We also observe a

striking increasing trend since 2020, which corresponds to the COVID-19 pandemic that

substantially impacts the global economy and financial markets. The aggregate MTail

is always higher than 5% as indicated by the red dotted line, below which the extreme

realizations of commodity futures and factor returns are independent.

Figure 2 describes the contemporaneous relation between the commodity tail risk and
6 This restriction alleviates the concern that commodity contracts with low liquidity may contaminate

our MTail estimation. By doing this, a valid estimate of a commodity’s tail risk is obtained only if there
is a sufficient number of non-zero return observations over the estimation window.

7 It is worth noting that the parameters in the GARCH(1,1) process and the cut-off point for left-tail
events are determined within each rolling estimation window, without introducing the look-forward bias
for the estimation of MTail.

8 In terms of the estimation methodology for MTail, we also consider alternative rolling estimation
horizons of the GARCH(1,1) model of 200, 300, 400, and 500 days. We also model the marginal dis-
tributions of commodity risk factors and futures return with the GJR-GARCH model of Glosten et al.
(1993) and the AR(2)-GARCH(1,1) model to account for autocorrelation in returns. The results are
qualitatively the same and available from the authors upon request.
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stock market returns. Panel A plots the times series of commodity tail risk and stock

market index. To facilitate comparison, we standardize both series to have zero mean

and unit variance. The contemporaneous relation between the two time series is signifi-

cantly negative with a correlation coefficient of −0.43 (p-value = 0.00). Furthermore, the

commodity tail risk index appears counter-cyclical, especially during the earlier sample

periods and the COVID-19 pandemic. In Panel B, we plot the monthly changes in the

commodity tail risk index against the stock market index returns and add best-fitting

lines based on simple linear regression (the blue line) and piecewise linear regression with

a kink at zero (the red dashed line). We note that stock market returns negatively relate

to changes in the commodity tail risk index with a slope coefficient of −0.029 (t-statistic

= −2.85). When the stock market returns are smaller than zero, this contemporaneous

relation becomes more negative with a slope coefficient of −0.053 (t-statistic = −2.16), in-

dicating that the counter-cyclical pattern between commodity futures and equity markets

is stronger in magnitude in market declines.

3.3 Commodity tail risk beta

To investigate whether the commodity tail risk predicts cross-sectional equity returns,

we sort stocks into decile portfolios based on their commodity tail risk exposure in the

previous month. If investors are concerned about the commodity tail risk, they would

demand greater (less) compensation in the form of higher (lower) expected returns for

an increase (decrease) in commodity tail risk. Following Kelly & Jiang (2014), we esti-

mate the following predictive regression for stock i’s one-period ahead expected returns

Et [Ri,t+1] on the commodity tail risk (MTail) over a 6-year fixed-length rolling window

as follows:

Et [Ri,t+1] = αi,t + βMTail
i,t ·MTailt, (2)

where βMTail
i,t is the loading of commodity tail risk for stock i in month t.

12



4 Empirical analyses and discussion

4.1 Summary statistics

Table 1 reports summary statistics and correlations for four commodity risk factors

used to construct the multivariate commodity tail risk. Since no benchmark market in-

dex is available for commodity futures, we consider the equally-weighted cross-sectional

average of all available contracts as the market portfolio. This simple commodity mar-

ket factor (CMKT) performs poorly with an annualized average return of 2% and an

annualized Sharpe ratio of 0.12. The other three factors all generate economically and

statistically significant returns and Sharpe ratio. For example, the basis factor has an

average annualized return of 14% and an annualized Sharpe ratio of 0.77. The average

annualized return of the momentum factor is 18% with a significant t-statistic of 3.76.

These results are in line with the evidence in Bakshi et al. (2019) for the US market, which

include the CMKT factor, a term structure factor, and a momentum factor for pricing

the cross section of commodity future returns. Consistent with Bianchi et al. (2021), we

also find that the basis-momentum factor generates significant returns of 13% per year

with a t-statistic of 4.65, making it another strong return predictor in the Chinese futures

markets.

We need daily commodity risk factors to model the dependence between individual

commodity futures and factor returns. The descriptive statistics for the daily factor return

series are summarized in Table 1 Panel B. The patterns of daily returns series are largely

consistent with those based on the monthly data. In Panel C, we tabulate the correla-

tions between monthly factors and observe a modest positive correlation. For instance,

the momentum and basis factors are positively correlated with a Pearson (Spearman)

correlation coefficient of 0.42 (0.37), consistent with Bakshi et al. (2019). These varying

degrees of correlation suggest that individual factors may contain distinct information.

Finally, in Panel D we show the summary statistics of the MTail index, our key variable

in this study.

Table 2 reports summary statistics and correlation for the commodity tail risk beta

(βMTail) estimated via Equation (2) along with several firm-level control variables to
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be used in asset pricing tests. Statistics reported here are obtained as the time-series

averages of the cross-sectional means. In particular, the βMTail has a mean of −0.27 and

a standard deviation of 0.64. For the average cross section, the maximum and minimum

values of βMTail are 4.43 and −5.01, respectively.

We consider several popular firm characteristics, including the firm size (Fama &

French, 1992), book-to-market ratio (Fama & French, 1992; Liu et al., 2019), momentum

(Jegadeesh & Titman, 1993), market beta (Fama & French, 1992), short-term reversal

(Jegadeesh, 1990), annual growth of total assets (Cooper et al., 2008), quarterly operating

profitability (Liu et al., 2019), co-skewness (Harvey & Siddique, 2000), the Amihud’s

illiquidity measure (Amihud, 2002), turnover (Liu et al., 2019), lottery demand (Bali et

al., 2017; Hou et al., 2023), idiosyncratic volatility (Ang, Hodrick, et al., 2006), and the

equity left-tail risk (Atilgan et al., 2020). Details of these variables are summarized in

Appendix C. Descriptive statistics for these firm-level control variables are reported in

Panel A Table 2. In Panel B, we summarize the time-series average of the cross-sectional

correlation between variables. It is worth noting that the correlations between βMTail and

firm-level variables are low, as the Pearson and Spearman correlation coefficients are all

below 0.10. As βMTail measures the sensitivity of each stock to the commodity tail risk, it

is reasonable to expect that the βMTail contains information not captured by traditional

firm characteristics or financial variables.

4.2 Univariate portfolio sorts

At the end of month t, we sort all stocks into decile portfolios based on pre-ranking

βMTail
i,t to obtain one-month-ahead excess returns for month t+ 1 with equal- and value-

weighting schemes. We form zero-cost portfolios by taking long (short) positions in

portfolios with the highest (lowest) βMTail
i,t to examine the return differential between

them.

Table 3 reports the time-series means of predictive excess portfolio returns, annual-

ized standard deviation and Sharpe ratio, skewness, and kurtosis for each βMTail-sorted

portfolios, and monthly risk-adjusted returns based on the CAPM, Fama-French 3-factor,

Carhart 4-factor, and Fama-French 5-factor models. We also include the return spread
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and risk-adjusted return spread between long-short portfolios. Panels A and B summarize

results for equal- and value-weighting schemes, respectively.

Results in Table 3 provide strong evidence in support of the predictive ability of the

commodity tail risk beta. We find that stocks with greater βMTail estimates have higher

next-month returns than those with lower βMTail estimates. In particular, stocks in

the highest βMTail-sorted decile generate monthly equal-weight (value-weighted) average

excess returns of 0.58% (0.29%), whereas there is a clear and sharp decline in returns

for the lowest βMTail-sorted portfolio. The average returns of the equal-weighted (value-

weighted) high-minus-low βMTail-sorted spread are 0.81% (1.11%) per month with a t-

statistic of 2.72 (2.73), translating to a sizeable annualized return differential of 9.7%

(13.3%). The same pattern can be observed for risk-adjusted returns. For example,

the Fama-French 5-factor model-adjusted return spread between extreme βMTail-sorted

portfolios are 0.97% (1.39%) per month with equal (value) weighting scheme. Hence,

this significant and substantial return differential is not driven by exposure to standard

risk factors. We also observe that risk-adjusted returns for portfolios with the lowest

βMTail tend to be negative and statistically significant, whereas all those for portfolios

with the highest βMTail are positive but insignificant. These imply that the significantly

positive abnormal return spread is driven by the underperformance of low-βMTail stocks.

Intuitively, investors pay higher prices for stocks that effectively hedge the commodity

tail risk and accept negative abnormal returns in the future.

In summary, the first set of empirical results based on univariate portfolio sorts is

consistent with our prediction: risk-averse investors are willing to pay higher prices for

stocks with negative or low βMTail which hedge commodity tail risk, and they demand

additional compensation for holding stocks with higher exposure to the commodity tail

risk thus these stocks are discounted more heavily.

Next we examine how long the substantial return spreads last. Answer to this ques-

tion may shed light on the nature of the information contained in commodity tail risk

beta: if the information has little to do with the fundamental economic mechanism, the

predictability tends to fade away rather quickly. In Table 4 Panel A, we summarize

portfolio excess returns over longer horizons. From the second month after portfolio con-
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struction, extreme portfolios with the highest and lowest βMTail generate value-weighted

excess returns of 0.34% and −0.53% per month, respectively, with a return differential

of 0.86% (t-statistic = 2.21) on a monthly basis. The substantial return differential be-

tween extreme portfolios remains significant all the way to the fifth month after portfolio

formation. In particular, it is 0.99% with a t-statistic of 2.76 for month t+5. The predic-

tive power of βMTail continues to be positive with slightly reduced statistical significance

until the twenty-fourth month when the return difference is 0.65% per month (t-statistic

= 1.99). The predictability gradually disappears from the 24-month post-formation pe-

riod onwards. In Panel B we find consistent results for risk-adjusted returns. Results in

this table indicate that the predictive power of commodity tail risk beta is not a short-

term affair and the information contained in the commodity tail risk beta is related to

economic fundamentals.

To better understand the characteristics of commodity tail beta-sorted portfolios, we

examine a set of firm-level attributes for each portfolio, including size, book-to-market

ratio, momentum, market beta, short-term reversal, annual growth of total assets, quar-

terly operating profitability, co-skewness, the Amihud illiquidity measure, turnover, lot-

tery demand, idiosyncratic volatility, and the equity left-tail risk in Table 5. We note that

βMTail-sorted portfolios exhibit little association with most of these stock characteristics

except the size, market beta, and ROE. In particular, stocks with higher βMTail tend to

be larger, with greater market beta, and higher return-on-equity ratio.9 Hence, consistent

with low correlations reported in Table 2, the βMTail-sorted portfolios are overall weakly

correlated with the firm characteristics we examine here.

4.3 Transition matrix

A potential concern for the prior analysis is that the estimated commodity tail risk

beta (βMTail) is specific to the formation month but not the subsequent month over which

we calculate portfolio excess returns. Hence, we examine the cross-sectional persistence

of βMTail by estimating the six- and twelve-month ahead portfolio transition matrix for
9 In the following sections we will investigate whether the significant positive relation between βMTail

and expected equity returns is driven by some of these attributes based on the bivariate portfolio analysis
and Fama & MacBeth (1973) cross-sectional regressions.
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all stocks. In particular, after sorting stocks into decile portfolios in month t, we repeat

the same procedure and compute the percentage of stocks that are classified into each

decile portfolios in months t+ 6 and t+ 12.

In Table 6, we summarize the time series average of the transition probabilities that a

stock in a decile portfolio (indicated by the row) in one month moves to another portfolio

(indicated by the column) in the subsequent six and twelve months in Panels A and B,

respectively. If the evolution for βMTail of each stock is a random process and the lagged

value of βMTail is independent of the current value of βMTail, all transition probabilities

should be 10%. However, we observe that 52.9% of stocks sorted to the lowest βMTail

decile portfolio remain in the same portfolio six months later. Similarly, 52.4% of stocks

sorted into the highest βMTail portfolio stay in the same decile six months later. Turning

to the twelve-month ahead horizon, 35.1% (34.9%) of stocks in the lowest (highest) decile

remain in the same portfolio after twelve months. These findings suggest that a stock’s

sensitivity to commodity tail risk is persistent.

4.4 Bivariate portfolio analysis

We now perform the bivariate portfolio sorts to examine the relation between com-

modity tail risk beta and future equity returns by controlling for a set of return predictors

and firm characteristics. Each month, we conduct sequential sorting exercises to assign

stocks into decile portfolios based on one of 13 control variables collated in Appendix C

and within each portfolio we further allocate stocks into deciles based on their βMTail.

All portfolios are re-balanced monthly. This bivariate portfolio analysis helps examine

whether the return spreads between high and low commodity tail risk beta-sorted port-

folios remain significant after controlling for existing firm-level characteristics.

Table 7 summarizes equal- (Panel A) and value-weighted (Panel B) portfolio returns.

We note that the predictive power of βMTail remains statistically significant and econom-

ically large after controlling for each variable. In Panel A, the return difference between

the highest and lowest βMTail-sorted portfolios ranges from 0.53% to 0.85% per month

with t-statistics between 2.27 and 3.03. For value-weighted portfolios, we observe stronger

results that the return differential ranges from 0.68% to 1.15% on a monthly basis with
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t-statistics between 2.41 and 3.66. Furthermore, risk-adjusted return differentials based

on the Fama-French 5-factor model are positively and highly significant across all control

variables. The limited impact of control variables on the return spread is not surpris-

ing given the low correlation between βMTail and firm characteristics shown in Table

2. Our bivariate portfolio analysis highlights the distinct information contained in the

commodity tail risk beta.

4.5 Fama-MacBeth regressions

We perform the two-stage Fama & MacBeth (1973) regressions to test whether the

commodity tail risk beta is able to explain cross-sectional future stock returns when simul-

taneously taking account of well-documented return predictors and firm characteristics.

We consider the same set of variables as in the bivariate portfolio sorts and summarize

the results in Table 8.

In Panel A, we report the coefficient estimates and their t-statistics based on the

ordinary least squares regressions without controlling for the industry effects.10 Next,

in Panel B, we control for the industry effects by assigning each stock to one of the

nine industries based on the China Securities Regulatory Commission (CSRC) industry

classification code.11 Our primary variable of interest is the βMTail reported in the first

row. We find that the slope coefficient for our commodity tail risk beta is consistently

positive and remains significant as we add more return predictors and firm characteristics.

In Model (14) when all variables are included, the coefficient for βMTail is 0.29 with a t-

statistic of 2.80. These indicate a strong positive relation between the commodity tail risk

beta and the cross section of futures equity returns, which is not subsumed by existing

risk factors or firm-level characteristics. We obtain qualitatively the same results after

controlling for the industry effects in Panel B. The Fama & MacBeth (1973) regression

results indicate that the information content of the commodity tail risk beta is distinct

from that contained in popular return predictors and firm characteristics we consider.
10 We also use the weighted least squares regressions in which the weights are defined as one plus ob-

served stock returns in month t−1 (Asparouhova et al., 2013) to perform the Fama-MacBeth regressions.
These results are qualitatively the same and available from the authors upon request.

11 These industries include Mining, Manufacturing, Retail & Wholesale, Transportation, IT, Finance,
Real estate, Utilities, and Other. We require each industry to have at least 50 stocks to avoid the
potential small sample bias.
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4.6 Spanning test

We construct a commodity tail risk beta factor and investigate whether it can be

explained by well-documented common risk factors following Fama & French (1993).

The spanning test helps us determine whether the commodity tail risk beta factor adds

to the explanation of average stock returns on top of existing factors (Fama & French,

2018).

At the end of each month, we divide all stocks into two size groups based on mar-

ket capitalization using the median value of the stock universe. Stocks are also sorted

independently into three commodity tail risk beta groups using the 30th and 70th per-

centiles. We use the intersections of those groups to obtain six size-βMTail combinations.

The equal- (EW) and value-weighted (VW) returns of the βMTail factor are calculated,

respectively, as the equal- and value-weighted average returns of the two high-βMTail

minus the corresponding low-βMTail portfolios.

Table 9 summarizes the commodity tail risk beta factor returns and risk-adjusted

returns based on the same asset pricing models as those in previous sections. We find

that the EW (VW) βMTail factor generates average returns of 0.59% (0.61%) per month

with a significant t-statistic of 2.87 (2.88). Furthermore, the risk-adjusted returns remain

positive and highly significant with the t-statistics being 2.83, 3.19, 3.20, and 3.19, respec-

tively, based on the CAPM, Fama-French 3-factor, Carhart 4-factor, and Fama-French

5-factor models for the equal-weighting scheme. Consistent results are obtained for the

value-weighting scheme and, together, they indicate that existing common risk factors

cannot explain the βMTail factor.

4.7 Cross-sectional pricing of commodity tail risk beta factor

In this final baseline test, we analyze the pricing of commodity tail risk beta fac-

tor and traditional commodity risks in equity portfolios. We include commodity risk

factors already shown to be priced in the US equity markets (see Brooks et al., 2016;

Fernandez-Perez et al., 2017, for example) in addition to our commodity tail risk beta

factor. Methodologically, we perform the Fama & MacBeth (1973) two-stage regressions

to estimate portfolios’ exposure to risk factors and prices of risks. In the first stage, we
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estimate the monthly time-series regressions to obtain equity portfolios’ loading of risk

factors as follows:

Rp,t = β0,t + βF,tF t + ηp,t, (3)

where βF,t is a set of risk factors, including our commodity tail risk beta factor, the

commodity market, basis, commodity momentum, and basis-momentum factors. In the

second stage, we run the cross-sectional regression after obtaining the coefficients for risk

factors as follows:

R̄p = γ0 + λF β̂F,p + εp, (4)

where R̄p is the sample average of excess returns of portfolio p, λF are prices of risk, β̂F,p

are portfolio beta estimates from the first stage, γ0 is the intercept, and εp is the pricing

error of portfolio p.12 To compare model efficiency, we compute the cross-sectional R2 as

follows:

R2 = 1−
1
N

∑N
p=1 ε̂

2
p

Var
(
R̄p

) . (5)

We also evaluate the root mean squared error (RMSE) for each model as follows:

RMSE =

√√√√ 1

T

T∑
t=1

(
R̄p,t − ˆ̄Rp,t

)2
, (6)

where ˆ̄Rp = λ̂F β̂F,p is the model implied average excess portfolio returns. We use 35 eq-

uity portfolios as test assets: the 25 size and book-to-market sorted and 10 βMTail-sorted

portfolios. Across all specifications, we control the market, size, value, and momentum

factors of the equity market. We report t-statistics computed based on both the Newey

& West (1986) approach and the Shanken (1992) correction.

In Table 10 we summarize the results for the second-stage Fama–MacBeth regressions.

Across all specifications, we find that the commodity tail risk beta factor consistently

carries significant positive risk premium ranging from 0.8% to 1.1% per month, which

are close to the return spread between portfolios with the highest and lowest commodity

tail risk beta βMTail reported in Table 3 at 0.81%. Moreover, we observe declines in

the RMSE and increases in the R2 for models augmented with the commodity tail risk
12 We also estimate Equation (4) without the intercept with qualitatively the same results. These are

available from the authors upon request.
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beta factor indicating improved model fit and incremental explanatory power of this

factor to explain equity portfolio returns. These results underscore our commodity tail

risk beta factor as a credible factor with incremental pricing information not contained

in traditional commodity risk factors documented in the literature. In other words, the

pricing ability of commodity tail risk is not subsumed by existing commodity risk factors.

Finally, it is worth noting that the basis and commodity momentum factors command

economically large and statistically significant risk premium in China. These findings are

consistent with evidence in the US market that commodity risk factors are able to explain

the cross section of stock returns (Brooks et al., 2016; Fernandez-Perez et al., 2017).

5 Economic mechanism

What is the economic channel through which commodity tail risk predicts stock re-

turns? To answer this question, we propose a mechanism from a macroeconomic per-

spective that rationalizes the predictability of commodity tail risk. Commodities nicely

capture consumption and price-related information as they directly link to the aggregate

consumption level and are able to hedge inflation risk (Boons et al., 2014; Erb & Har-

vey, 2006; Hou & Szymanowska, 2013). Recognizing the poor quality of consumption

expenditure data, Hou & Szymanowska (2013) argue that commodity futures contains

more price-relevant consumption information than traditional assets such as stocks and

bonds. Hence, we conjecture that the commodity tail risk index contains information

useful for predicting future changes in macroeconomic variables such as inflation and in-

dustrial production, and the stock return predictability is a natural manifestation of the

information.

To investigate this economic channel, we follow Bakshi et al. (2012) and Hou et al.

(2023) and estimate an ARMA model as follows:

yt+1 = αy + βy∆MTailt−3:t + θ1yt + θ2εt + εt+1, (7)

where yt+1 is the growth rate of the dependent variable at time t+1, ∆MTailt−3:t denotes

shocks to the MTail series computed as the difference between MTail values at time

t and t − 3, and yt and εt are first-order AR and MA terms, respectively. We first
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consider three macroeconomic variables: the consumer price inflation (CPI), producer

price index (PPI), and industrial production (IP) as the dependent variable. Meanwhile,

motivated by Gao & Süss (2015), we also examine whether the commodity tail risk is

related to the consumer and producer’s perception of future economic conditions, which

are proxied by three economic outlook indices: the purchasing managers’ index (PMI),

consumer confidence index (CCI), and consumer expectation index (CEI). All variables

are collected from the National Bureau of Statistics of China and the WIND database.

Table 11 summarizes estimation results for macroeconomic variables in Panel A and

economic outlook indices in Panel B. In Panel A, for models with CPI, we observe that

the coefficient for the commodity tail risk shocks is negative and statistically significant

at the 5% level suggesting that an increase in commodity tail risk shocks is associated

with a drop in CPI and price level in the future. Meanwhile, shocks to the MTail provide

incremental predictive power for the inflation beyond its past data even when coefficients

for both AR and MA terms are highly significant. We also find a negative and significant

coefficient for models of the PPI. More importantly, in models with industrial production,

negative and highly significant βy indicates that higher commodity tail risk corresponds

to lower subsequent industrial production growth. These results imply that heightened

commodity tail risk is related to deteriorated prices and economic conditions in the future.

Statistically, we observe that adding MTail shocks improves the goodness-of-fit of the

models as both the log-likelihood function value (LLF) and Akaike information criterion

(AIC) of augmented models are improved when MTail shocks are added. In Panel B, we

observe that the coefficient for commodity tail risk shocks continues to be negative and

significant for all indices of economic outlook, thus a positive shock to MTail predicts

lower producer and consumer confidence and more pessimistic expectation for future

economic conditions.

Next, we examine the relation between our commodity tail risk index and the equity

tail risk as the low probability of negative realization of commodity futures may be

reflected in the tail risk of equity market through the signal of bad state of economy.

In particular, we estimate the following regression on a monthly basis to scrutinize the
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left-tail dynamics of the two markets:

ETailt+ξ = b0 + b1MTailt + et+ξ, (8)

where ETailt+ξ is the equity market tail risk and ξ ranges from −6 to +6 months.

To proxy the equity market tail risk, we follow Atilgan et al. (2020) and Bali et al.

(2009) and use the VaR, which describes the level of losses over a given time horizon at

a given probability, and ES, which measures the mean of losses over a given time horizon

with a given probability. Each month, we compute the VaR as the 5th percentile of daily

stock market returns over the past one year, i.e., 250 trading days, and evaluate ES as

the conditional expectation of losses given that these losses are beyond the 5% threshold

over the same time period.

Figure 3 shows the slope coefficient b1 in bars for each time horizon ξ and the corre-

sponding Newey & West (1986) t-statistics in red line. We observe a consistent pattern

in both panels that the slope coefficient b1 is positive over all ξ: high levels of commodity

tail risk are more likely to coincide with and precede high equity tail risk. In particu-

lar, the slope coefficient b1 is the largest and most significant when ξ = 0, suggesting a

strong positive contemporaneous relation between tail risks emerged from both markets.

Importantly, b1 is also positive when ξ is greater than zero suggesting that heightened

commodity tail risk predates more severe equity market conditions in the near future.

In summary, the commodity tail risk contains a significant predictive power for both

macroeconomic variables and economic outlook measures. Our analysis shows that an

increase in commodity tail risk indicates adverse conditions in the real economy and

a deterioration of key economic indicators such as inflation and industrial production,

exhibits strong association with, or predates, the equity tail risk. These findings point

to the nature of information contained in commodity tail risk, as changes in commodity

tail risk capture the states of the economy and this in turn helps determine equilibrium

asset prices.
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6 Robustness tests and further analysis

6.1 A volume-weighted commodity tail risk index

In our first robustness check, we construct a volume-weighted commodity tail risk

index (VW-MTail) with weights corresponding to each commodity’s trading volume in

month t. Figure 4 shows the time series of the volume-weighted MTail. Although fol-

lowing a similar pattern, the volume-weighted index is more volatile compared to the

equal-weighted one. To examine whether this alternative index has similar asset pricing

implication for stock returns, we re-estimate the βMTail
V W for each stock and perform the

univariate portfolio analysis. In Table 12 Panel A for the equal-weighting scheme, the

return spread between decile portfolios with the highest and lowest loadings of βMTail
V W is

0.71% per month and highly significant at the 1% level (t-statistic = 2.73). Moreover,

the risk-adjusted returns are all economically large and statistically significant at the 1%

level regardless of the specific asset pricing model. We obtain consistent results for the

value-weighted equity portfolios in Panel B. Overall, these findings reveal that our main

results are robust with regard to the weighting scheme underlying the commodity tail

risk index construction.

6.2 China-specific asset pricing model

As our focus is on the Chinese stock market, we investigate whether our main results

are robust to a Chinese specific asset pricing model. Liu et al. (2019) propose a four-factor

model (CH4) featuring the market, size, earnings-price ratio-based value, and turnover

factors for the Chinese stock market. We follow Liu et al. (2019) and perform our baseline

analysis again to obtain βMTail after controlling for these four factors. We exclude the 30%

smallest stocks to avoid potential contamination of corporate shell-value.13 Specifically,

we estimate βMTail with respect to the following specification:

Et [Ri,t+1] = αi,t + βMTail
i,t ·MTailt + βFi,t ·Et [Ft+1] , (9)

13 Under tight IPO rule, listed companies in China with the smallest size are more likely to be treated
as potential shells in reverse mergers and their valuation is attributable to this shell value (Liu et al.,
2019).
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where F is a vector of four Chinese specific equity risk factors, including the market

(MKTCH), size (SMBCH), EP-based value (VMG), and turnover (PMO) factors, which

are obtained from Robert F Stambaugh’s website. The sample period is from January

2005 to December 2021.

In Table 13 we summarize the univariate portfolio analysis results and observe that the

predictive power of βMTail
i,t over future stock returns remains robust. The return difference

between the high-βMTail
i,t and low-βMTail

i,t portfolios is 0.90% per month (t-statistic = 2.69)

based on the equal-weighting scheme and 0.89% per month (t-statistic = 2.20) based on

the value-weighting scheme. Furthermore, the monthly risk-adjusted returns relative to

the Carhart 4-factor, CH4, and Fama-French 5-factor models are significant at 1.07% (t-

statistic = 2.60), 1.18% (t-statistic = 2.24), and 1.12% (t-statistic = 2.54), respectively,

for value-weighted portfolios. These findings corroborate our baseline results and show

that the commodity tail risk beta based on the Chinese specific pricing model remains a

strong and robust predictor of future equity returns.

6.3 The investor clientele effect

As our empirical findings suggest that the commodity tail risk matters for the marginal

utility of investors, we further dissect the sources of the significant commodity tail risk

premia through the investor clientele effect.

Financial intermediaries such as investment banks, insurance companies, and funds

matter for asset prices (see Brunnermeier & Sannikov, 2014; He & Krishnamurthy, 2013;

He et al., 2017; Hu et al., 2013, among others). Haddad & Muir (2021) argue that

institutional investors demand a lower premium as they have lower risk aversion than

retail investors. This motivates us to investigate whether the return premium measured

by the return difference between stocks with the highest and lowest commodity tail risk

beta varies with the investor clientele. Specifically, we form 25 portfolios by first sort-

ing all stocks into quintile portfolios based on their institutional ownership. Within

each ownership-sorted portfolio, stocks are further allocated into quintiles based on their

βMTail. We collect the quarterly institutional ownership data from the Wind database.

Table 14 reports the future excess returns for 25 bivariate portfolios and the return
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spreads between extreme βMTail-sorted portfolios. In Panel A, for equal-weighted bivari-

ate portfolios, we observe that taking long positions in the highest βMTail stocks and short

positions in the lowest βMTail stocks generate statistically significant and economically

large returns across all levels of institutional ownership. Interestingly, the magnitude of

return spreads decreases with rising proportion of institutional ownership. For exam-

ple, the return spreads between extreme βMTail-sorted portfolios are 0.83% (t-statistic

= 2.61) and 0.50% (t-statistic = 1.77) on a monthly basis for the lowest- and highest-

institutional ownership portfolios, respectively, in Panel A. These results suggest that

stocks with higher institutional ownership offer lower βMTail premium, which are con-

sistent with Haddad & Muir (2021) in that institutional investors have a higher risk

appetite. We obtain qualitatively the same results for value-weighted portfolios in Panel

B. Taken together, the evidence in Table 14 underscores a clear variation in commodity

tail risk premium across stocks with different ownership, but institutional clientele effect

cannot fully explain the risk premium.

6.4 Additional robustness tests

In this section, we use different model specifications of estimating βMTail and addi-

tional data filters to check the robustness of our baseline results. First, we construct

two additional measures of βMTail as specified in Equation (9). In specification (1), we

set F = [MKT, SMB,HML,RMW,CMA], that is, the market, size, value, profitability,

and investment factors. In specification (2), we set F = [MKT, SMB,HML,UMD, IML],

where UMD and IML are the momentum and liquidity factors, respectively. The liquidity

factor is the illiquid-minus-liquid (IML) factor of Amihud et al. (2015). Second, we apply

additional data filters to exclude stock in the ST/PT status and those in the finance

industry.14 Third, we follow Kelly & Jiang (2014) to apply a 10-year rolling window or

an 8-year rolling window to estimate βMTail. Finally, we examine whether our results

are specific to the exact probability level p used as the cut-off point for left-tail events.

Specifically, we set the threshold for left-tail events to p = 2.5% and p = 10% (instead of
14 The special treatment (ST) or particular transition (PT) status are given to listed firms with

financial losses or whose net asset is less than par value over at least two consecutive financial years.
These stocks are more likely to experience potential financial distress.

26



p = 5%).

Table 15 summarizes the results of these additional robustness tests. In Panel A, when

βMTail
i,t is estimated after controlling for the Fama-French 5-factor model, the monthly

risk-adjusted returns relative to the Carhart 4-factor and Fama-French 5-factor model

are 0.878% (t-statistic = 2.96) and 0.884% (t-statistic = 2.70), respectively, for value-

weighted portfolios. Panel C shows that after further excluding very small stocks, stocks

in the ST/PT status or in the finance industry, the commodity tail risk premia remain

highly significant and robust. Furthermore, in Panels D and E, we find that for value-

weighted portfolios, excess returns and risk-adjusted returns are all positive and signifi-

cant at the 5% level. For example, based on the 10-year rolling window in Panel E, the

return difference between the extreme βMTail decile portfolios is 0.80% per month with

a t-statistic of 2.20. The Fama-French 5-factor model-adjusted return spread is 0.67%

per month and highly significant at the 1% level. In Panels E and F, we obtain positive

and significant results for the relation between βMTail and future equity returns when

we use alternative thresholds for left-tail events. These additional robustness test results

corroborate our main finding that the commodity tail risk impacts the cross section of

stock returns in China.

6.5 Industry-level evidence

In our final robustness check, we examine the significance of commodity tail risk pre-

mia for stocks in nine industries specified by the CSRC industry code, including Mining,

Manufacturing, Retail & Wholesale, Transportation, IT, Finance, Real estate, Utilities,

and Other. Each month, stocks in each sector are sorted into value-weighted quartile

portfolios based on the monthly commodity tail risk beta (βMTail).15 From Table 16,

we observe that the predictive relation between βMTail and stock returns next month re-

mains robust across different industries. For example, the return spread after controlling

for the Fama-French 5-factor model are in the range of 0.710% and 1.095% per month

and highly significant at the 5% level for stocks in Mining, Manufacturing, Retail &

Wholesale, Transportation, IT, Finance, and Other industries. Overall, we find robust
15 To guarantee a sufficient number of observations in each portfolio, we form quartile portfolios for

this robustness test.
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evidence for the significant commodity tail risk premia at the industry level.

7 Conclusion

In this study, we investigate the asset pricing implication of commodity tail risk

in cross-sectional equity returns in the Chinese stock market. Given that commodity

prices contain valuable information about the future economic conditions and capture the

consumption level in the aggregate market, our paper focuses on the informational role of

commodity prices’ extreme negative realizations and their impact on the pricing of stocks.

As a single left-tail event of one commodity may not fully describe adverse conditions

in the market, we measure the commodity tail risk under a multivariate setting based

on a set of well-documented systematic factors. Empirically, we provide comprehensive

evidence that stocks vary in their exposure to the commodity tail risk and that their

commodity tail risk betas exhibit significant predictive power for future equity returns in

the cross section. Stocks that hedge commodity tail risk underperform their counterparts

with high exposure to past commodity tail risk by 16.7% per year on the risk-adjusted

basis. Such cross-sectional predictability is persistent for up to 24 months and is robust

to controls of various common risk factors and firm characteristics.

We provide a potential economic channel to rationalize this return predictability from

a macroeconomic perspective. We argue that the heightened commodity tail risk cap-

tures deteriorating economic conditions in the future and offer empirical evidence that

an increase in commodity tail risk corresponds to a significant decline in macroeconomic

variables in the subsequent period. These findings lend support to our conjecture that

shocks to the commodity tail risk index reflect the states of the economy and describe

changes in consumption and investment opportunities in the future. Our study sheds

new light on the relation between commodity and equity markets, and dissects the role

of commodity tail risk in explaining equity risk premia.
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Figure 1: Commodity futures multivariate tail risk index

This figure shows the time series of commodity multivariate tail risk index (MTail) estimated via a linear factor model with the market, basis, momentum, and
basis-momentum factors. The MTail index, shown in blue solid line, is the equal-weighted cross-sectional average of multivariate tail risk estimated over all
commodity futures contracts. The dark (shallow) area indicates the corresponding 25% and 75% quantiles (5% and 95% quantiles). The red dotted line is the
benchmark probability under which asset i and one or more of risk factors do not realize a left-tail event simultaneously, i.e., they are independent. Gray shadow
bars are National Bureau of Economic Research (NBER) recessions. The sample period is from January 2005 to October 2022.
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Figure 2: Changes in commodity tail risk index versus stock market index returns

This figure compares the commodity tail risk (MTail) index with the stock market index. Panel A plots the times series of monthly commodity tail risk (solid
line) and stock market index (dashed line). Both time series are standardized to have zero mean and unit variance. Panel B shows the monthly changes in the
commodity tail risk index against stock market index returns. The solid line is the best fitting line obtained from the linear regression, whereas the dashed line
is the best fitting line from the piecewise linear regression with a kink at which the stock market index returns are zero. The sample period is from January 2005
to October 2022.
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Figure 3: Commodity tail index versus equity market tail risk

In this figure, we estimate the following monthly regression: ETailt+ξ = b0 + b1MTailt + et+ξ, where ETailt+ξ is the equity market tail risk and time horizon
ξ ranges from −6 to +6 months. Following Atilgan et al. (2020) and Bali et al. (2009), we use the Value-at-Risk (VaR) (Panel A) which describes the level of
losses over a given time horizon at a given probability, and expected shortfall (ES) (Panel B) which measures the mean of losses over a given time horizon with a
given probability, to proxy equity market tail risk. Each month we compute the VaR as the 5th percentile of daily equity market returns over the past one year,
i.e., 250 trading days, and obtain ES as the conditional expectation of losses given that these losses are beyond the 5% threshold over the same time period. We
multiply these measures by −1 to facilitate comparison. The slope coefficients b1 (left y-axis) and their corresponding Newey & West (1986) t-statistics (right
y-axis) are in shaded bars and red lines, respectively. The sample period is from January 2005 to October 2022.
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Figure 4: Robustness: Volume-weighted commodity multivariate tail risk index

This figure shows the time series of volume-weighted commodity multivariate tail risk index (MTail) estimated via a linear factor model with the market, basis,
momentum, and basis-momentum factors. The MTail index, shown in blue solid line, is the volume-weighted cross-sectional average of multivariate tail risk
estimated over all commodity futures contracts. The red dotted line is the benchmark probability under which the asset i and one or more of risk factors do not
realize a left-tail event simultaneously, i.e., they are independent. Gray shadow bars are National Bureau of Economic Research (NBER) recessions. The sample
period is from January 2005 to October 2022.
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Table 1: Summary statistics of commodity factors and the MTail index

This table summarizes descriptive statistics of commodity risk factors and commodity multivariate tail
risk (MTail) index. To construct commodity factors, we sort all commodity contracts into five quintile
portfolios based on different pricing signals at the month end, and take long (short) positions in the
quintiles predicted to appreciate (depreciate) in the following month. All portfolios are equally-weighted
and re-balanced monthly with updated pricing signals. We use the third-nearest futures contracts due
to liquidity concern. CMKT is the long-only equally-weighted cross-sectional average of all available
commodity contracts. We consider three commodity factors, including the term structure (Basis), mo-
mentum (CMOM), and basis-momentum (Basis-Mom). For each factor, we report annualized mean
returns, annualized standard deviations (S.D.) and Sharpe ratio (SR), skewness (Skew), kurtosis (Kurt),
minimum (Min), 25th percentile (Q25), median (Med), 75th percentile (Q75), and maximum (Max) for
each monthly (daily) factor return series in Panel A (B). The t−statistics is the Newey & West (1986)
adjusted t-statistics. Panel C tabulates correlations of monthly commodity factors. The Pearson (Spear-
man) correlations are reported below (above) the diagonal. Panel D shows the summary statistics of the
MTail index. The sample period is from January 2005 to October 2022.

Panel A: Monthly commodity factors
Mean t−Stat S.D. SR Skew Kurt Min Q25 Med Q75 Max

CMKT 0.02 0.43 0.13 0.12 -0.72 8.27 -0.23 -0.02 0.00 0.02 0.15
Basis 0.14 3.12 0.18 0.77 -1.56 14.50 -0.36 -0.01 0.01 0.04 0.19
CMOM 0.18 3.76 0.20 0.87 0.15 4.35 -0.21 -0.02 0.01 0.05 0.22
Basis-Mom 0.13 4.65 0.14 0.96 0.21 5.51 -0.12 -0.01 0.01 0.03 0.19

Panel B: Daily commodity factors
Mean t−Stat S.D. SR Skew Kurt Min Q25 Med Q75 Max

CMKT 0.01 0.41 0.10 0.12 -0.57 7.33 -0.04 0.00 0.00 0.00 0.03
Basis 0.13 3.51 0.13 1.00 -0.18 7.60 -0.06 0.00 0.00 0.01 0.06
CMOM 0.17 3.83 0.16 1.07 -0.19 5.33 -0.05 0.00 0.00 0.01 0.06
Basis-Mom 0.13 4.11 0.13 1.07 -0.10 4.56 -0.04 0.00 0.00 0.01 0.04

Panel C: Correlation between monthly factors
CMKT Basis CMOM Basis-Mom

CMKT 0.22 0.24 0.25
Basis 0.40 0.37 0.35
CMOM 0.26 0.42 0.32
Basis-Mom 0.33 0.42 0.33

Panel D: Commodity tail risk index
Mean S.D. Skew Kurt Min Q25 Med Q75 Max

MTail index 0.16 0.04 0.40 2.08 0.08 0.13 0.15 0.19 0.25
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Table 2: Descriptive statistics and correlation for stock variables

This table reports the descriptive statistics (Panel A) and correlations (Panel B) for the commodity tail
risk beta (βMTail) and a set of firm-specific control variables, including the mean, standard deviation
(S.D.), minimum (Min), 5th percentile (Q5), 25th percentile (Q25), median (Med), 75th percentile
(Q75), 95th percentile (Q95), maximum (Max), skewness (Skew), and kurtosis (Kurt) for each variable.
The variables include firm size (Size), book-to-market ratio (BM), momentum (MOM), market beta
(Beta), reversal (REV), investment (IA), operating profitability (ROE), co-skewness (Coskew), illiquidity
(ILLIQ), turnover (TURN), lottery demand (MAX), idiosyncratic volatility (IVOL), and the equity left
tail risk (VaR). Details of firm-level variables are summarized in Appendix C. The summary statistics as
the time-series averages of the cross-sectional means. In Panel B, the Pearson (below the diagonal) and
Spearman (above the diagonal) correlation coefficients are the time-series averages at the end of each
month of the cross-sectional correlations between these variables. The sample period is from January
2005 to October 2022.

Panel A: Descriptive statistics
Mean S.D. Min Q5 Q25 Med Q75 Q95 Max Skew Kurt

βMTail -0.27 0.64 -5.01 -1.25 -0.61 -0.25 0.09 0.67 4.43 -0.57 20.56
Size 4.20 1.02 1.94 2.95 3.48 3.99 4.71 6.12 9.82 1.33 5.85
BM 0.41 0.27 -1.84 0.10 0.24 0.36 0.53 0.89 2.76 1.78 83.98
MOM 0.00 0.03 -0.10 -0.04 -0.01 0.00 0.02 0.05 0.17 0.73 5.61
Beta 1.08 0.31 -0.18 0.54 0.89 1.09 1.28 1.55 2.62 -0.04 5.85
REV 0.01 0.12 -0.39 -0.13 -0.05 -0.01 0.06 0.20 1.70 3.53 63.97
IA 0.36 2.86 -0.70 -0.14 0.02 0.11 0.26 0.97 71.11 17.14 363.35
ROE 0.02 0.31 -5.52 -0.10 0.01 0.03 0.07 0.14 2.04 -6.88 223.02
Coskew -0.04 0.25 -0.73 -0.40 -0.22 -0.07 0.10 0.41 0.95 0.57 3.54
ILLIQ 0.47 1.39 0.00 0.03 0.14 0.29 0.56 1.24 44.53 17.68 539.67
TURN 0.02 0.01 0.00 0.00 0.01 0.01 0.02 0.04 0.15 2.83 17.79
MAX 0.03 0.02 0.00 0.01 0.02 0.03 0.04 0.06 0.20 2.79 51.70
IVOL 0.02 0.01 0.00 0.01 0.01 0.02 0.03 0.04 0.09 1.59 28.18
VaR 0.05 0.01 0.01 0.03 0.04 0.05 0.05 0.06 0.09 0.22 4.15

Panel B: Correlation matrix
βMTail Size BM MOM Beta REV IA ROE Coskew ILLIQ TURN MAX IVOL VaR

βMTail 0.04 0.05 -0.07 0.03 -0.02 0.02 0.04 -0.04 -0.04 -0.03 -0.04 -0.05 -0.07
Size 0.05 0.09 0.19 0.01 0.05 0.23 0.39 0.11 -0.70 -0.27 0.00 0.00 -0.24
BM 0.04 0.17 0.00 0.00 0.02 -0.04 -0.08 0.09 -0.04 -0.12 -0.14 -0.19 -0.33
MOM -0.08 0.20 -0.02 -0.04 0.25 0.01 0.19 -0.07 -0.23 0.16 0.15 0.21 0.12
Beta 0.03 0.00 0.00 -0.03 -0.04 0.05 0.00 0.01 -0.14 0.33 0.20 0.09 0.52
REV -0.02 0.05 0.00 0.29 -0.02 -0.01 0.03 -0.02 -0.10 0.13 0.09 0.17 -0.05
IA -0.02 0.08 0.01 0.01 0.01 -0.01 0.29 -0.02 -0.23 -0.07 0.02 0.02 -0.03
ROE 0.02 0.13 0.01 0.07 0.02 0.01 0.02 -0.01 -0.30 -0.15 -0.02 -0.04 -0.19
Coskew -0.03 0.13 0.12 -0.07 0.01 -0.02 0.00 -0.01 -0.06 -0.07 -0.05 -0.05 -0.08
ILLIQ -0.03 -0.31 -0.09 -0.10 -0.14 -0.05 -0.02 -0.08 -0.02 -0.14 -0.01 -0.01 0.01
TURN -0.02 -0.21 -0.10 0.20 0.22 0.24 -0.05 -0.03 -0.07 -0.11 0.49 0.48 0.53
MAX -0.04 -0.02 -0.11 0.13 0.17 0.14 0.01 -0.01 -0.04 0.01 0.46 0.83 0.37
IVOL -0.05 -0.05 -0.15 0.19 0.08 0.22 0.01 -0.02 -0.04 0.04 0.49 0.87 0.37
VaR -0.07 -0.29 -0.33 0.14 0.52 -0.01 0.01 -0.07 -0.09 0.01 0.46 0.33 0.36

40



Table 3: Univariate portfolio of stocks sorts on βMTail

This table reports monthly excess returns and risk-adjusted returns for decile portfolios formed based
on commodity tail risk beta βMTail, where Low (High) includes stocks with the lowest (highest) βMTail

at the end of the previous month. For each decile portfolio, we report the one-month ahead mean excess
returns (Ret-Rf), annualized standard deviation (S.D.) and Sharpe ratio (SR), skewness (Skew), and
kurtosis (Kurt). The last column shows the return spread (H-L) between taking long (short) positions
in the highest (lowest) βMTail portfolios. Risk-adjusted returns (αs) are based on the CAPM, Fama-
French 3-factor (FF3), Carhart 4-factor (Carhart), and Fama-French 5-factor (FF5) models. Panel A (B)
summarizes equally- (value-) weighted portfolio results. The Newey & West (1986) adjusted t-statistics
are reported in parentheses and *, **, *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively. The sample period is from January 2005 to October 2022.

Panel A: Equally-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.224 0.135 0.420 0.699 0.725 0.763 0.689 0.755 0.778 0.582 0.807***
(-0.37) (0.23) (0.71) (1.15) (1.18) (1.20) (1.11) (1.23) (1.14) (0.94) (2.72)

S.D. 0.27 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.26 0.13
SR -0.10 0.06 0.19 0.32 0.33 0.35 0.32 0.35 0.34 0.27 0.75
Skew 0.01 -0.06 -0.09 0.01 -0.04 0.00 -0.02 -0.04 0.09 0.06 0.46
Kurt 4.23 4.94 4.99 4.89 4.71 4.36 4.48 4.30 4.30 3.59 4.87
CAPM α -0.571* -0.219 0.078 0.355 0.379 0.413 0.345 0.413 0.415 0.242 0.813***

(-1.91) (-0.74) (0.26) (1.13) (1.24) (1.26) (1.18) (1.41) (1.22) (0.77) (2.75)
FF3 α -1.004*** -0.695*** -0.461*** -0.162* -0.105 -0.101 -0.145 -0.052 -0.039 -0.051 0.953***

(-6.51) (-5.14) (-3.67) (-1.83) (-1.02) (-1.00) (-1.38) (-0.48) (-0.24) (-0.24) (3.15)
Carhart α -0.992*** -0.689*** -0.446*** -0.149 -0.079 -0.070 -0.114 -0.022 -0.009 -0.034 0.958***

(-6.13) (-4.96) (-3.52) (-1.64) (-0.75) (-0.75) (-1.09) (-0.22) (-0.05) (-0.15) (3.11)
FF5 α -0.909*** -0.565*** -0.327*** -0.024 0.040 0.024 0.004 0.061 0.110 0.058 0.968***

(-6.79) (-4.65) (-2.78) (-0.26) (0.37) (0.24) (0.03) (0.53) (0.61) (0.23) (2.99)

Panel B: Value-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.815 -0.344 -0.184 -0.101 0.001 0.438 0.188 0.346 0.261 0.293 1.108***
(-1.41) (-0.61) (-0.35) (-0.19) (0.00) (0.84) (0.35) (0.59) (0.44) (0.48) (2.73)

S.D. 0.25 0.24 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.25 0.16
SR -0.39 -0.17 -0.10 -0.05 0.00 0.24 0.10 0.19 0.14 0.14 0.84
Skew -0.28 -0.21 -0.12 -0.01 0.12 -0.13 0.31 0.21 0.09 -0.04 0.09
Kurt 4.56 5.65 5.98 5.48 5.88 4.63 5.23 4.90 3.65 3.27 3.77
CAPM α -1.161*** -0.685*** -0.512*** -0.420** -0.321** 0.128 -0.117 0.030 -0.046 -0.041 1.120***

(-4.95) (-3.48) (-3.84) (-2.17) (-2.00) (0.63) (-0.59) (0.19) (-0.23) (-0.14) (2.68)
FF3 α -1.246*** -0.813*** -0.591*** -0.536*** -0.367** 0.030 -0.159 0.043 -0.003 0.075 1.320***

(-5.62) (-4.73) (-4.28) (-3.02) (-2.33) (0.15) (-0.84) (0.28) (-0.01) (0.25) (2.92)
Carhart α -1.263*** -0.824*** -0.586*** -0.545*** -0.360** 0.048 -0.129 0.077 0.022 0.073 1.337***

(-5.76) (-4.80) (-4.22) (-3.17) (-2.32) (0.24) (-0.68) (0.46) (0.10) (0.25) (2.93)
FF5 α -1.255*** -0.721*** -0.538*** -0.500*** -0.342** 0.076 -0.164 0.033 0.098 0.132 1.388***

(-6.74) (-4.58) (-3.77) (-2.91) (-1.98) (0.36) (-0.97) (0.21) (0.45) (0.42) (3.27)
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Table 4: Long-term portfolio returns

This table reports the long-term performance of value-weighted decile portfolios formed based on com-
modity tail risk beta βMTail, where Low (High) includes stocks with the lowest (highest) βMTail at
the end of the previous month. We report monthly average excess returns (Panel A) and risk-adjusted
returns (αs) (Panel B) for each portfolio from two to 36 months after the portfolio formation. The
last column shows the return spread (H-L) between taking long (short) positions in the highest (lowest)
βMTail portfolios. Risk-adjusted returns (αs) are based on the CAPM, Fama-French 3-factor (FF3),
Carhart 4-factor (Carhart), and Fama-French 5-factor (FF5) models. The Newey & West (1986) ad-
justed t-statistics are reported in parentheses and *, **, *** denote statistical significance at the 10%,
5%, and 1% levels, respectively. The sample period is from January 2005 to October 2022.

Panel A: Excess returns
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

t+ 2 -0.525 -0.296 0.016 0.223 -0.063 0.201 0.398 0.317 0.350 0.336 0.861**
(-0.87) (-0.57) (0.03) (0.39) (-0.12) (0.35) (0.76) (0.56) (0.60) (0.55) (2.21)

t+ 3 -0.609 -0.217 -0.017 0.189 -0.271 0.081 0.229 0.316 0.400 0.336 0.945**
(-1.01) (-0.38) (-0.03) (0.31) (-0.47) (0.16) (0.45) (0.56) (0.69) (0.55) (2.53)

t+ 4 -0.540 -0.112 0.208 -0.080 -0.011 0.222 0.204 0.314 0.273 0.347 0.887**
(-0.90) (-0.19) (0.34) (-0.12) (-0.02) (0.44) (0.39) (0.57) (0.47) (0.55) (2.38)

t+ 5 -0.610 -0.163 0.180 -0.042 0.145 -0.034 0.399 0.568 0.271 0.384 0.994***
(-0.99) (-0.29) (0.30) (-0.07) (0.29) (-0.07) (0.81) (1.00) (0.45) (0.60) (2.76)

t+ 6 -0.473 -0.048 0.162 0.156 0.243 0.347 0.421 0.409 0.293 0.379 0.853**
(-0.81) (-0.08) (0.28) (0.28) (0.42) (0.64) (0.80) (0.73) (0.49) (0.59) (2.26)

t+ 12 -0.201 0.090 0.171 0.164 0.236 0.230 0.350 0.821 0.554 0.493 0.694**
(-0.32) (0.15) (0.28) (0.30) (0.47) (0.43) (0.65) (1.31) (0.99) (0.79) (2.02)

t+ 18 -0.110 0.114 0.345 0.320 0.173 0.429 0.598 0.611 0.454 0.555 0.665**
(-0.16) (0.18) (0.60) (0.55) (0.30) (0.77) (1.05) (1.03) (0.77) (0.90) (2.00)

t+ 24 0.190 0.425 0.515 0.757 0.440 0.638 0.789 0.889 0.822 0.841 0.650**
(0.27) (0.68) (0.90) (1.22) (0.71) (1.08) (1.23) (1.51) (1.29) (1.39) (1.99)

t+ 30 0.086 0.393 0.633 0.493 0.677 0.350 0.551 0.840 0.669 0.532 0.445
(0.13) (0.56) (0.98) (0.83) (1.13) (0.56) (0.89) (1.45) (1.06) (0.85) (1.55)

t+ 36 0.590 0.378 0.418 0.712 0.666 0.734 0.801 0.872 0.542 0.418 -0.172
(0.86) (0.57) (0.67) (1.08) (1.07) (1.16) (1.31) (1.36) (0.83) (0.63) (-0.55)

Panel B: Risk-adjusted returns
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

t+ 2 -1.025*** -0.629*** -0.404** -0.246 -0.355** -0.131 0.034 0.076 0.150 0.115 1.140***
(-6.14) (-3.85) (-2.57) (-1.63) (-2.40) (-0.64) (0.19) (0.43) (0.69) (0.40) (2.81)

t+ 3 -1.033*** -0.557*** -0.394** -0.114 -0.601*** -0.288* 0.041 0.063 0.184 0.151 1.183***
(-5.86) (-3.29) (-2.29) (-0.64) (-3.73) (-1.88) (0.24) (0.30) (0.78) (0.59) (3.03)

t+ 4 -0.971*** -0.482*** -0.180 -0.456** -0.340* -0.076 0.021 0.107 0.036 0.168 1.139***
(-5.21) (-2.73) (-1.15) (-2.40) (-1.82) (-0.41) (0.10) (0.54) (0.17) (0.62) (2.88)

t+ 5 -1.050*** -0.521*** -0.185 -0.429** -0.111 -0.309* 0.105 0.365* 0.010 0.195 1.245***
(-6.20) (-3.35) (-1.33) (-2.52) (-0.64) (-1.84) (0.52) (1.71) (0.04) (0.78) (3.43)

t+ 6 -0.975*** -0.544*** -0.264 -0.266 -0.065 -0.038 0.077 0.192 -0.026 0.135 1.110***
(-5.35) (-3.74) (-1.47) (-1.52) (-0.27) (-0.21) (0.47) (1.13) (-0.14) (0.60) (3.39)

t+ 12 -0.778*** -0.356** -0.307** -0.356* -0.176 -0.314* -0.116 0.358** 0.141 0.042 0.820**
(-5.35) (-2.14) (-2.25) (-1.89) (-1.10) (-1.85) (-0.74) (1.97) (0.71) (0.16) (2.55)

t+ 18 -0.768*** -0.377** -0.064 -0.228 -0.341** -0.066 0.077 0.109 0.015 0.031 0.799***
(-5.31) (-2.17) (-0.32) (-1.18) (-2.06) (-0.28) (0.55) (0.84) (0.08) (0.13) (2.59)

t+ 24 -0.735*** -0.348 -0.206 0.049 -0.209 -0.012 0.102 0.232 0.079 0.128 0.863***
(-3.64) (-1.53) (-0.94) (0.26) (-1.09) (-0.06) (0.58) (1.52) (0.43) (0.61) (2.89)

t+ 30 -0.588*** -0.256 -0.025 -0.150 0.211 -0.189 -0.016 0.331** 0.094 0.055 0.643**
(-2.59) (-1.17) (-0.12) (-0.83) (0.92) (-1.06) (-0.10) (1.97) (0.58) (0.29) (2.18)

t+ 36 -0.113 -0.187 -0.151 0.166 0.156 0.152 0.261 0.199 -0.001 -0.083 0.030
(-0.41) (-1.20) (-0.72) (1.01) (0.90) (0.97) (1.24) (1.12) (-0.01) (-0.55) (0.10)
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Table 5: Average portfolio characteristics

This table reports the time-series averages of monthly firm-level characteristics for decile portfolios sorted
by βMTail. Decile 1 (Low) and decile 10 (High) contain stocks with the lowest and highest βMTail,
respectively. Firm-level characteristics include firm size (Size), book-to-market ratio (BM), momentum
(MOM), market beta (Beta), short-term reversal (REV), annual growth of total assets (IA), quarterly
operating profitability (ROE), co-skewness (Coskew), Amihud’s illiquidity measure (ILLIQ), turnover
(TURN), lottery demand (MAX), idiosyncratic volatility (IVOL), and the equity left-tail risk (VaR).
The last column reports the differences for firm-level characteristics between extreme deciles (H-L). The
Newey & West (1986) adjusted t-statistics are reported in parentheses and *, **, *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 2005 to
October 2022.

Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Size 4.349 4.208 4.181 4.171 4.178 4.209 4.230 4.283 4.351 4.515 0.166**
(2.05)

BM 0.336 0.397 0.432 0.447 0.460 0.473 0.464 0.451 0.420 0.363 0.028
(1.61)

MOM 0.008 0.004 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.002 -0.006
(-0.57)

Beta 1.069 1.065 1.064 1.065 1.060 1.053 1.059 1.072 1.085 1.123 0.054***
(2.71)

REV 0.022 0.012 0.008 0.007 0.006 0.004 0.005 0.004 0.005 0.011 -0.011
(-0.61)

IA 0.599 0.334 0.495 0.566 0.342 0.313 0.250 0.274 0.350 0.724 0.125
(0.35)

ROE -0.010 -0.004 0.000 0.003 -0.001 0.000 0.007 0.008 0.016 0.023 0.033***
(2.92)

Coskew -0.015 -0.033 -0.033 -0.039 -0.042 -0.041 -0.044 -0.053 -0.051 -0.052 -0.037
(-1.29)

ILLIQ 0.453 0.475 0.503 0.498 0.488 0.497 0.500 0.461 0.455 0.419 -0.034
(-1.04)

TURN 0.018 0.017 0.016 0.016 0.016 0.015 0.015 0.015 0.016 0.018 0.000
(-0.14)

MAX 0.033 0.031 0.031 0.030 0.030 0.030 0.030 0.030 0.031 0.032 -0.001
(-0.14)

IVOL 0.021 0.020 0.019 0.019 0.018 0.018 0.018 0.018 0.019 0.020 -0.001
(-0.49)

VaR 0.048 0.045 0.044 0.044 0.043 0.043 0.043 0.043 0.044 0.045 -0.002
(-1.14)
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Table 6: Transition matrix

This table summarizes six- and 12-month ahead transition probabilities for stocks sorted by commodity
tail risk beta (βMTail). After sorting stocks into decile portfolios in month t, we repeat the same
procedure and summarize the average percentage that a stock in a decile portfolio (indicated by the row)
in month t moves to another portfolio (indicated by the column) in month t+ 6 and t+ 12 in Panels A
and B, respectively. The sample period is from January 2005 to October 2022.

Panel A: 6-month ahead transition probabilities
To Low (%) P2 (%) P3 (%) P4 (%) P5 (%) P6 (%) P7 (%) P8 (%) P9 (%) High (%)

From
Low 52.9 24.7 11.2 5.5 2.8 1.4 0.8 0.4 0.2 0.1
P2 22.5 28.8 20.5 12.6 7.3 4.1 2.3 1.2 0.6 0.2
P3 10.2 18.6 23.0 18.6 12.7 7.9 4.7 2.5 1.2 0.5
P4 5.4 11.2 17.2 20.5 17.4 12.4 8.0 4.7 2.3 0.9
P5 3.1 6.8 11.4 16.1 19.4 16.9 12.4 8.0 4.2 1.7
P6 1.9 4.1 7.3 11.2 15.9 19.3 17.2 12.6 7.4 3.1
P7 1.1 2.5 4.5 7.4 11.4 16.3 20.3 18.3 12.4 5.8
P8 0.7 1.4 2.7 4.5 7.4 11.7 17.3 22.7 20.1 11.4
P9 0.4 0.8 1.5 2.5 4.3 7.1 11.8 19.1 28.2 24.3
High 0.2 0.4 0.6 1.1 1.8 3.2 5.7 10.9 23.7 52.4

Panel B: 12-month ahead transition probabilities
To Low (%) P2 (%) P3 (%) P4 (%) P5 (%) P6 (%) P7 (%) P8 (%) P9 (%) High (%)

From
Low 35.1 23.1 15.0 9.9 6.5 4.3 2.8 1.7 1.0 0.5
P2 21.5 19.8 16.6 13.1 10.0 7.3 5.2 3.5 2.1 1.1
P3 13.6 15.6 15.8 14.4 12.3 9.9 7.6 5.5 3.5 1.9
P4 9.2 12.0 13.8 14.2 13.4 11.8 9.8 7.6 5.2 3.0
P5 6.4 9.1 11.4 12.9 13.5 13.1 11.8 9.9 7.4 4.6
P6 4.4 6.8 9.1 11.1 12.7 13.5 13.4 12.2 10.0 6.8
P7 3.1 5.0 7.1 9.1 11.2 13.0 14.2 14.3 13.0 10.1
P8 2.1 3.5 5.2 7.1 9.3 11.6 13.9 15.8 16.4 15.0
P9 1.4 2.4 3.6 5.1 7.1 9.5 12.5 15.9 19.8 22.8
High 0.8 1.3 2.1 3.1 4.6 6.7 9.7 14.4 22.3 34.9
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Table 7: Bivariate portfolio analysis

This table summarizes the sequential bivariate portfolio analysis results based on a set of control variables
and a stock’s commodity tail risk beta (βMTail). We first sort stocks into decile portfolios based on one
of 13 control variables collated in Appendix C. Within each decile, stocks are further sorted into decile
portfolios based on the βMTail. All portfolios are re-balanced at the end of each month. Panel A (b)
reports monthly excess returns for equal-weighted (value-weighted) portfolios. The penultimate column
shows the monthly average return spreads between the highest- and lowest-βMTail portfolios across each
firm-specific characteristics, and the last column reports risk-adjusted returns (α) based on the Fama-
French 5-factor model. The Newey & West (1986) adjusted t-statistics are reported in parentheses and
*, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period
is from January 2005 to October 2022.

Panel A: Equal-weighted bivariate portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L FF5 α

Size -0.032 0.175 0.395 0.596 0.689 0.681 0.660 0.676 0.788 0.695 0.728** 0.839***
(-0.05) (0.30) (0.66) (1.01) (1.09) (1.07) (1.09) (1.09) (1.21) (1.08) (2.56) (2.61)

BM -0.145 0.239 0.395 0.613 0.688 0.845 0.642 0.781 0.697 0.585 0.730** 0.871***
(-0.24) (0.40) (0.66) (1.00) (1.11) (1.32) (1.07) (1.28) (1.05) (0.93) (2.40) (2.66)

MOM -0.096 0.316 0.446 0.603 0.814 0.537 0.772 0.655 0.697 0.633 0.730*** 0.838***
(-0.16) (0.52) (0.70) (0.99) (1.30) (0.86) (1.28) (1.05) (1.14) (1.03) (2.75) (3.12)

Beta -0.185 0.215 0.327 0.562 0.692 0.682 0.724 0.614 0.769 0.547 0.732*** 0.883***
(-0.31) (0.36) (0.55) (0.92) (1.08) (1.09) (1.18) (0.99) (1.18) (0.87) (2.59) (2.77)

REV -0.206 0.187 0.471 0.634 0.826 0.697 0.666 0.809 0.825 0.597 0.803*** 0.931***
(-0.34) (0.31) (0.79) (1.03) (1.29) (1.14) (1.10) (1.26) (1.23) (0.96) (2.86) (3.19)

IA -0.249 0.216 0.427 0.570 0.804 0.725 0.687 0.745 0.816 0.580 0.829*** 0.953***
(-0.42) (0.36) (0.71) (0.95) (1.29) (1.16) (1.09) (1.22) (1.21) (0.93) (2.73) (2.91)

ROE -0.216 0.146 0.442 0.647 0.744 0.754 0.662 0.713 0.832 0.587 0.803*** 0.920***
(-0.35) (0.25) (0.74) (1.05) (1.22) (1.20) (1.08) (1.16) (1.23) (0.94) (2.69) (2.79)

Coskew -0.196 0.172 0.386 0.639 0.635 0.769 0.610 0.692 0.678 0.653 0.849*** 0.985***
(-0.32) (0.28) (0.65) (1.03) (1.03) (1.20) (0.98) (1.11) (1.07) (1.00) (2.89) (3.03)

ILLIQ -0.135 0.215 0.403 0.544 0.716 0.642 0.610 0.677 0.721 0.687 0.822*** 0.904***
(-0.22) (0.36) (0.66) (0.86) (1.16) (1.04) (0.99) (1.08) (1.10) (1.08) (3.03) (2.97)

TURN -0.109 0.126 0.418 0.625 0.700 0.614 0.664 0.723 0.665 0.617 0.726*** 0.890***
(-0.18) (0.21) (0.69) (1.00) (1.08) (0.99) (1.09) (1.17) (1.04) (0.99) (2.65) (2.87)

MAX -0.042 0.152 0.427 0.590 0.661 0.596 0.629 0.725 0.703 0.616 0.658** 0.793***
(-0.07) (0.25) (0.69) (0.95) (1.08) (0.96) (1.00) (1.15) (1.10) (1.00) (2.47) (2.94)

IVOL -0.041 0.249 0.399 0.642 0.628 0.627 0.557 0.694 0.618 0.645 0.686*** 0.837***
(-0.07) (0.41) (0.65) (1.03) (0.99) (0.99) (0.91) (1.10) (0.98) (1.05) (2.71) (3.07)

VaR -0.056 0.127 0.496 0.490 0.582 0.621 0.473 0.719 0.632 0.475 0.531** 0.657**
(-0.10) (0.22) (0.81) (0.80) (0.95) (1.06) (0.79) (1.15) (0.99) (0.79) (2.27) (2.50)

(Continued next page.)
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Panel B: Value-weighted bivariate portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L FF5 α

Size -0.043 0.154 0.376 0.564 0.676 0.659 0.629 0.621 0.761 0.640 0.683** 0.797**
(-0.07) (0.26) (0.64) (0.96) (1.10) (1.06) (1.05) (1.02) (1.17) (1.00) (2.41) (2.51)

BM -0.708 -0.153 -0.136 -0.026 0.269 0.395 0.200 0.437 0.302 0.227 0.935*** 1.106***
(-1.21) (-0.26) (-0.25) (-0.05) (0.46) (0.69) (0.36) (0.76) (0.51) (0.39) (2.67) (2.90)

MOM -0.641 -0.221 0.014 0.116 0.397 0.200 0.280 0.105 0.228 0.258 0.899*** 1.146***
(-1.16) (-0.40) (0.02) (0.19) (0.7) (0.36) (0.53) (0.18) (0.42) (0.43) (2.88) (3.47)

Beta -0.578 -0.091 -0.057 0.100 0.271 0.563 0.481 0.430 0.389 0.343 0.922*** 1.167***
(-0.96) (-0.16) (-0.10) (0.17) (0.44) (0.92) (0.83) (0.71) (0.64) (0.57) (2.75) (3.09)

REV -0.730 -0.224 -0.032 0.111 0.210 0.360 0.293 0.547 0.446 0.422 1.152*** 1.379***
(-1.27) (-0.39) (-0.06) (0.19) (0.36) (0.68) (0.53) (0.89) (0.70) (0.68) (3.66) (4.17)

IA -0.740 -0.189 0.014 0.081 0.221 0.506 0.439 0.310 0.552 0.294 1.034*** 1.250***
(-1.29) (-0.34) (0.03) (0.14) (0.38) (0.90) (0.74) (0.55) (0.87) (0.49) (2.98) (3.33)

ROE -0.768 -0.197 -0.138 0.063 0.308 0.402 0.244 0.349 0.337 0.157 0.925*** 1.153***
(-1.28) (-0.34) (-0.25) (0.11) (0.49) (0.68) (0.42) (0.61) (0.51) (0.25) (2.77) (3.09)

Coskew -0.530 -0.160 0.095 0.180 0.217 0.562 0.377 0.462 0.398 0.425 0.955*** 1.246***
(-0.89) (-0.26) (0.16) (0.31) (0.37) (0.92) (0.64) (0.75) (0.63) (0.67) (2.60) (3.06)

ILLIQ -0.242 0.106 0.308 0.357 0.630 0.652 0.544 0.559 0.568 0.592 0.834*** 0.900***
(-0.42) (0.18) (0.53) (0.62) (1.07) (1.12) (0.90) (0.99) (0.94) (0.97) (2.94) (2.80)

TURN -0.675 -0.246 -0.114 0.037 0.231 0.133 0.415 0.375 0.175 0.218 0.893*** 1.154***
(-1.15) (-0.42) (-0.20) (0.07) (0.39) (0.23) (0.70) (0.62) (0.29) (0.35) (2.78) (3.13)

MAX -0.602 -0.229 0.008 0.125 0.269 0.336 0.588 0.294 0.422 0.290 0.893*** 1.099***
(-1.04) (-0.41) (0.01) (0.23) (0.46) (0.57) (1.02) (0.49) (0.72) (0.47) (2.79) (3.49)

IVOL -0.646 -0.159 -0.176 0.047 0.251 0.453 0.136 0.385 0.279 0.299 0.945*** 1.207***
(-1.10) (-0.29) (-0.31) (0.08) (0.40) (0.77) (0.25) (0.61) (0.48) (0.49) (2.93) (3.64)

VaR -0.614 -0.230 0.082 0.191 0.255 0.193 0.112 0.493 0.276 0.145 0.759*** 1.004***
(-1.06) (-0.40) (0.14) (0.32) (0.42) (0.35) (0.20) (0.84) (0.46) (0.25) (2.86) (3.29)
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Table 8: Fama-MacBeth regressions

This table summarizes Fama & MacBeth (1973) regression results. We run cross-sectional regressions of monthly excess stock returns (in percent) in month t+ 1

on the stock’s commodity tail risk beta (βMTail) and a set of lagged control variables, and report the time-series averages of the slope coefficients. Panel A (B)
presents the results without (with) controlling for the industry effects. The Newey & West (1986) adjusted t-statistics are reported in parentheses and *, **, ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period is from January 2005 to October 2022.

Panel A: Without controlling for the industry effects
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

βMTail 0.548*** 0.532*** 0.485*** 0.341*** 0.370*** 0.408*** 0.404*** 0.402*** 0.395*** 0.419*** 0.356*** 0.259** 0.277** 0.293***
(3.05) (2.99) (2.85) (2.67) (2.77) (3.06) (3.03) (3.03) (3.00) (3.16) (2.89) (2.19) (2.47) (2.80)

Size -0.541*** -0.549*** -0.540*** -0.464*** -0.449*** -0.448*** -0.453*** -0.439*** -0.364** -0.604*** -0.558*** -0.564*** -0.404***
(-3.16) (-3.32) (-3.46) (-3.09) (-2.98) (-2.98) (-3.03) (-2.95) (-2.39) (-3.87) (-3.57) (-3.62) (-2.93)

BM 0.015 0.007 0.267 0.250 0.257 0.261 0.275 0.334 0.135 0.062 -0.008 0.008
(0.04) (0.02) (0.78) (0.74) (0.76) (0.77) (0.82) (1.00) (0.41) (0.19) (-0.02) (0.03)

MOM -4.077 -3.896 -0.818 -0.906 -1.151 -1.471 -0.921 4.917 4.324 5.843 8.401**
(-1.00) (-1.01) (-0.22) (-0.24) (-0.31) (-0.39) (-0.25) (1.22) (1.07) (1.50) (2.39)

Beta -0.393 -0.445 -0.442 -0.439 -0.422 -0.262 0.362 0.481* 0.268 0.378
(-1.10) (-1.26) (-1.25) (-1.24) (-1.18) (-0.76) (1.23) (1.67) (0.91) (1.13)

REV -1.873*** -1.868*** -1.837*** -1.772*** -1.673*** -0.032 0.054 0.340 0.675
(-3.29) (-3.28) (-3.23) (-3.18) (-3.02) (-0.06) (0.10) (0.63) (1.16)

IA -0.006 -0.007 -0.006 -0.006 -0.027 -0.025 -0.021 -0.027
(-0.21) (-0.25) (-0.23) (-0.21) (-1.02) (-0.95) (-0.80) (-1.07)

ROE 0.191 0.205 0.279 0.204 0.206 0.178 0.275
(0.78) (0.87) (1.11) (0.81) (0.82) (0.73) (1.02)

Coskew -0.259 -0.275 -0.310 -0.295 -0.289 -0.344
(-1.27) (-1.30) (-1.47) (-1.44) (-1.43) (-1.59)

ILLIQ 0.445*** 0.172* 0.262** 0.292*** 0.769**
(3.88) (1.71) (2.53) (2.82) (2.47)

TURN -0.553*** -0.448*** -0.425*** -0.357***
(-11.53) (-9.65) (-9.46) (-7.76)

MAX -0.214*** 0.076 0.054
(-4.18) (0.89) (0.60)

IVOL -0.549*** -0.563***
(-4.54) (-4.34)

VaR -2.387
(-0.26)

Intercept 0.755 3.036*** 3.102*** 3.060*** 2.933*** 2.818** 2.810** 2.817** 2.725** 2.069* 3.516*** 3.748*** 4.025*** 3.067***
(1.25) (2.69) (2.72) (2.74) (2.59) (2.52) (2.51) (2.53) (2.51) (1.85) (3.07) (3.16) (3.33) (3.10)

R2 (%) 0.58 2.65 3.47 4.32 5.77 6.21 6.25 6.38 6.57 6.88 8.07 8.67 8.98 9.63
(Continued next page.)
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Panel B: Controlling for the industry effects
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

βMTail 0.615*** 0.612*** 0.579*** 0.436*** 0.460*** 0.490*** 0.487*** 0.485*** 0.488*** 0.513*** 0.458*** 0.349*** 0.360*** 0.373***
(3.37) (3.49) (3.40) (3.64) (3.68) (3.91) (3.89) (3.89) (3.98) (4.05) (4.07) (3.36) (3.59) (3.93)

Size -0.591*** -0.596*** -0.577*** -0.504*** -0.491*** -0.490*** -0.495*** -0.478*** -0.396** -0.651*** -0.594*** -0.592*** -0.429***
(-3.22) (-3.35) (-3.43) (-3.12) (-3.03) (-3.02) (-3.07) (-3.02) (-2.44) (-3.92) (-3.59) (-3.60) (-2.97)

BM 0.009 0.002 0.247 0.230 0.237 0.239 0.255 0.321 0.152 0.067 0.003 0.016
(0.03) (0.01) (0.79) (0.74) (0.76) (0.77) (0.82) (1.03) (0.49) (0.22) (0.01) (0.06)

MOM -4.836 -4.771 -1.641 -1.724 -1.968 -2.016 -1.463 4.527 3.966 5.277 8.090**
(-1.27) (-1.34) (-0.47) (-0.50) (-0.57) (-0.58) (-0.42) (1.21) (1.07) (1.46) (2.46)

Beta -0.398 -0.454 -0.452 -0.448 -0.428 -0.256 0.369 0.508* 0.310 0.450
(-1.15) (-1.34) (-1.33) (-1.32) (-1.24) (-0.76) (1.32) (1.89) (1.11) (1.43)

REV -1.989*** -1.980*** -1.948*** -1.888*** -1.791*** -0.151 -0.053 0.221 0.536
(-3.85) (-3.83) (-3.76) (-3.71) (-3.54) (-0.30) (-0.11) (0.44) (0.99)

IA -0.001 -0.001 0.001 0.001 -0.020 -0.016 -0.013 -0.019
(-0.03) (-0.05) (0.03) (0.05) (-0.73) (-0.62) (-0.48) (-0.78)

ROE 0.151 0.155 0.228 0.176 0.174 0.146 0.250
(0.61) (0.64) (0.89) (0.69) (0.69) (0.59) (0.94)

Coskew -0.319* -0.330* -0.359* -0.337* -0.335* -0.358*
(-1.74) (-1.72) (-1.90) (-1.90) (-1.92) (-1.87)

ILLIQ 0.478*** 0.193* 0.296*** 0.326*** 0.802**
(4.03) (1.85) (2.77) (3.04) (2.52)

TURN -0.566*** -0.452*** -0.431*** -0.364***
(-12.05) (-9.81) (-9.69) (-8.16)

MAX -0.233*** 0.033 0.003
(-4.78) (0.44) (0.04)

IVOL -0.499*** -0.509***
(-4.39) (-4.20)

VaR -2.963
(-0.37)

Intercept 0.600 3.055** 3.100** 3.022** 2.954** 2.865** 2.859** 2.865** 2.759** 2.039* 3.505*** 3.747*** 3.977*** 2.957***
(0.92) (2.47) (2.49) (2.48) (2.37) (2.31) (2.30) (2.32) (2.31) (1.66) (2.78) (2.88) (3.00) (2.79)

Industry effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 (%) 3.43 5.33 5.85 6.59 7.92 8.29 8.33 8.45 8.58 8.89 10.02 10.58 10.85 11.60
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Table 9: Spanning test

This table summarizes average monthly returns and risk-adjusted returns of the commodity tail risk beta
factor. At the end of each month, we independently separate all stocks into two groups based on market
capitalization (Size) using the median value of the stock universe, and three commodity tail risk beta
(βMTail) groups using the 30th and 70th percentiles of βMTail. We use the intersections of those groups
and obtain six size-βMTail combinations. The equal- (EW) and value-weighted (VW) βMTail factors
are constructed by taking the return differences of high- and low-βMTail portfolios via equal- and value-
weighting schemes, respectively. Risk-adjusted returns (αs) are based on the CAPM, the Fama-French
3-factor (FF3), Carhart 4-factor (Carhart), and Fama-French 5-factor (FF5) models. The Newey & West
(1986) adjusted t-statistics are reported in parentheses and *, **, *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively. The sample period is from January 2005 to October 2022.

Average return CAPM α FF3 α Carhart α FF5 α

EW βMTail factor 0.594*** 0.593*** 0.673*** 0.687*** 0.677***
(2.87) (2.83) (3.19) (3.20) (3.19)

VW βMTail factor 0.611*** 0.611*** 0.707*** 0.722*** 0.722***
(2.88) (2.87) (3.26) (3.29) (3.27)
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Table 10: Cross-sectional pricing tests: The commodity tail risk and other risk factors

This table summarizes the second-stage Fama-MacBeth regression results for commodity risk factors on the cross section of equity portfolios. We consider four
commodity risk factors: the commodity market (CMKT), basis (Basis), momentum (CMOM), and basis-momentum (BM) factors. We use 35 equity portfolios
as test assets: 25 size and book-to-market sorted and 10 βMTail-sorted portfolios. Across all specifications, we control the market, size, value, and momentum
factors in the equity market. We report the estimated price of risk, root mean square error (RMSE), and cross-sectional R2. The t-statistics are computed based
on the Newey & West (1986) approach (in parentheses) and the Shanken (1992) correction (in square brackets). The sample period is from January 2005 to
October 2022.

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

γ0 0.026 0.03 0.026 0.031 0.025 0.024 0.028 0.032 0.024 0.027 0.027 0.027
(4.50) (5.21) (4.50) (5.22) (4.34) (4.33) (4.76) (5.39) (4.26) (4.71) (4.93) (4.94)
[3.93] [4.36] [3.77] [4.24] [1.79] [1.71] [3.19] [3.76] [3.66] [3.39] [2.09] [1.97]

λMTail 0.011 0.010 0.008 0.010 0.010 0.008
(3.28) (3.01) (2.63) (2.93) (3.08) (2.53)
[3.22] [2.99] [2.10] [2.82] [2.96] [2.21]

λCMKT 0.005 0.006 0.008 0.009
(0.77) (0.86) (1.19) (1.31)
[0.66] [0.70] [0.55] [0.57]

λBasis 0.076 0.085 0.073 0.081
(6.24) (6.49) (6.13) (6.26)
[3.18] [2.86] [3.21] [2.86]

λCMOM 0.050 0.048 0.058 0.060
(5.41) (5.24) (6.08) (6.07)
[3.18] [3.08] [2.41] [2.21]

λBM 0.011 0.024 0.014 0.012
(1.34) (2.87) (1.90) (1.69)
[1.06] [1.90] [0.76] [0.63]

λMKT -0.027 -0.032 -0.028 -0.033 -0.026 -0.024 -0.029 -0.033 -0.025 -0.028 -0.029 -0.028
(-2.95) (-3.46) (-3.01) (-3.54) (-2.79) (-2.71) (-3.15) (-3.61) (-2.8) (-3.12) (-3.20) (-3.16)
[-3.07] [-3.48] [-3.06] [-3.50] [-1.59] [-1.52] [-2.70] [-3.17] [-2.86] [-2.79] [-1.91] [-1.80]

λSMB 0.008 0.009 0.008 0.009 0.008 0.008 0.007 0.008 0.008 0.009 0.008 0.008
(1.84) (2.04) (1.90) (2.12) (1.95) (1.91) (1.59) (1.81) (1.85) (2.09) (1.86) (1.82)
[1.87] [2.09] [1.92] [2.16] [1.84] [1.77] [1.56] [1.80] [1.88] [2.13] [1.72] [1.65]

λHML 0.006 0.006 0.005 0.005 0.007 0.007 0.004 0.005 0.005 0.005 0.007 0.007
(1.87) (2.12) (1.64) (1.86) (2.39) (2.39) (1.27) (1.56) (1.70) (1.66) (2.28) (2.36)
[1.65] [1.84] [1.40] [1.56] [1.67] [1.61] [1.11] [1.35] [1.48] [1.41] [1.66] [1.66]

λMOM -0.014 0.002 -0.016 0.000 0.004 0.002 -0.018 -0.002 -0.014 0.004 0.000 -0.002
(-1.62) (0.27) (-1.83) (0.02) (0.52) (0.23) (-2.01) (-0.27) (-1.60) (0.52) (0.01) (-0.28)
[-1.60] [0.25] [-1.71] [0.02] [0.26] [0.11] [-1.60] [-0.22] [-1.54] [0.43] [0.00] [-0.13]

RMSE 0.29 0.21 0.28 0.21 0.11 0.10 0.24 0.17 0.28 0.20 0.10 0.09
R2 0.57 0.67 0.56 0.67 0.84 0.83 0.63 0.72 0.56 0.68 0.83 0.83
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Table 11: Economic channel analysis

This table summarizes results of the predictability tests of commodity tail risk index (MTail) on
macroeconomic variable and indices of economic outlook. We estimate an ARMA model as follows:
yt+1 = αy + βy∆MTailt−3:t + θ1yt + θ2εt + εt+1, where yt+1 is the growth rate of dependent variables at
time t+ 1, ∆MTailt−3:t is the difference between MTail values at time t and t−3, and yt and εt are first-
order autoregressive and moving-average terms, respectively. Panel A reports results for macroeconomic
variables as the dependent variable (∆yt+1): the consumer price inflation index (CPI), producer price
index (PPI), and industrial production (IP). Panel B summarizes results for economic outlook indices
as the forecasted variable: the purchasing managers’ index (PMI), consumer confidence index (CCI),
and consumer expectation index (CEI). LLF is the log-likelihood function value, and AIC is the Akaike
information criterion. Standard errors are reported in parentheses, *, **, and *** denote significance at
the 10%, 5%, and 1% levels, respectively. The sample period is from January 2005 to October 2022.

Panel A: Macroeconomic variables
αy θ1 θ2 βy LLF AIC

CPI -0.000 0.799*** -0.675*** 795 -1582
(0.001) (0.077) (0.062)

CPI + MTail -0.000 0.811*** -0.712*** -0.047** 797 -1585
(0.001) (0.062) (0.051) (0.022)

PPI -0.001 0.631*** 0.312*** 762 -1516
(0.002) (0.080) (0.092)

PPI + MTail -0.001 0.614*** 0.351*** -0.064** 765 -1519
(0.002) (0.079) (0.106) (0.028)

IP 0.101*** 0.970*** -0.270*** 570 -1131
(0.026) (0.018) (0.094)

IP + MTail 0.101*** 0.969*** -0.250** -0.160** 573 -1135
(0.025) (0.019) (0.104) (0.073)

Panel B: Economic outlook indices
αy θ1 θ2 βy LLF AIC

PMI -0.001*** 0.594** -0.928*** 366 -724
(0.001) (0.236) (0.077)

PMI + MTail -0.002*** 0.618*** -1.000*** -0.276** 371 -732
(0.000) (0.136) (0.000) (0.111)

CCI -0.002 -0.423 0.457 443 -878
(0.002) (0.502) (0.433)

CCI + MTail -0.002 -0.428 0.450 -0.260** 446 -883
(0.002) (0.480) (0.416) (0.117)

CEI -0.002 0.773** -0.788** 423 -839
(0.002) (0.379) (0.340)

CEI + MTail -0.001 0.953*** -1.000*** -0.319** 428 -845
(0.001) (0.024) (0.000) (0.138)
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Table 12: Robustness: Portfolio analysis based on volume-weighted βMTail
V W

This table reports monthly excess returns and risk-adjusted returns for decile portfolios formed based
on volume-weighted commodity tail risk beta βMTail

VW , where Low (High) includes stocks with the lowest
(highest) βMTail

VW at the end of the previous month. For each decile portfolio, we report the one-month
ahead mean excess returns (Ret-Rf), annualized standard deviation (S.D.) and Sharpe ratio (SR), skew-
ness (Skew), and kurtosis (Kurt). The last column shows the return spread (H-L) between taking long
(short) positions in the highest (lowest) βMTail

VW portfolios. Risk-adjusted returns (αs) are based on the
CAPM, Fama-French 3-factor (FF3), Carhart 4-factor (Carhart), and Fama-French 5-factor (FF5) mod-
els. Panel A (B) summarizes equally- (value-) weighted portfolio results. The Newey & West (1986)
adjusted t-statistics are reported in parentheses and *, **, *** denote statistical significance at the 10%,
5%, and 1% levels, respectively. The sample period is from January 2005 to October 2022.

Panel A: Equally-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.154 0.305 0.282 0.570 0.688 0.778 0.720 0.715 0.866 0.551 0.705***
(-0.25) (0.52) (0.49) (0.92) (1.12) (1.29) (1.10) (1.16) (1.36) (0.87) (2.73)

S.D. 0.27 0.27 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.27 0.12
SR -0.07 0.14 0.13 0.26 0.32 0.36 0.33 0.33 0.39 0.25 0.73
Skew 0.00 -0.02 -0.17 -0.06 -0.07 0.05 -0.09 -0.05 0.12 0.18 0.90
Kurt 4.26 4.90 4.84 4.95 4.83 4.72 4.35 4.12 4.12 3.91 5.73
CAPM α -0.504* -0.039 -0.061 0.220 0.346 0.437 0.369 0.366 0.514 0.200 0.703***

(-1.67) (-0.13) (-0.24) (0.73) (1.10) (1.40) (1.21) (1.25) (1.53) (0.64) (2.71)
FF3 α -0.914*** -0.508*** -0.540*** -0.269*** -0.145 -0.074 -0.103 -0.090 0.033 -0.206 0.707***

(-6.21) (-4.19) (-4.37) (-3.06) (-1.23) (-0.77) (-0.90) (-0.81) (0.25) (-1.12) (2.85)
Carhart α -0.908*** -0.497*** -0.526*** -0.250*** -0.123 -0.050 -0.081 -0.063 0.065 -0.170 0.738***

(-5.97) (-4.02) (-3.94) (-3.04) (-1.07) (-0.57) (-0.67) (-0.53) (0.51) (-0.93) (2.95)
FF5 α -0.789*** -0.386*** -0.399*** -0.090 0.010 0.070 0.034 0.007 0.114 -0.099 0.690***

(-6.48) (-3.54) (-3.29) (-1.05) (0.09) (0.64) (0.27) (0.06) (0.77) (-0.49) (2.74)

Panel B: Value-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.772 -0.367 -0.344 0.127 0.038 0.300 0.260 0.570 0.450 0.242 1.014***
(-1.33) (-0.69) (-0.68) (0.22) (0.07) (0.59) (0.45) (0.99) (0.77) (0.38) (3.03)

S.D. 0.25 0.23 0.22 0.24 0.22 0.21 0.23 0.23 0.24 0.26 0.15
SR -0.37 -0.19 -0.19 0.06 0.02 0.17 0.14 0.30 0.23 0.11 0.83
Skew -0.17 -0.39 -0.62 -0.03 0.07 -0.19 0.53 0.29 0.11 0.32 0.32
Kurt 4.73 5.77 6.06 5.37 5.06 5.26 5.35 4.55 3.85 4.09 3.63
CAPM α -1.120*** -0.683*** -0.650*** -0.213 -0.282 -0.001 -0.063 0.249 0.122 -0.103 1.017***

(-5.77) (-3.74) (-4.00) (-1.49) (-1.37) (-0.01) (-0.35) (1.33) (0.70) (-0.40) (2.96)
FF3 α -1.200*** -0.831*** -0.722*** -0.250* -0.322* -0.017 0.000 0.341* 0.176 -0.085 1.115***

(-6.94) (-4.59) (-4.12) (-1.83) (-1.73) (-0.11) (0.00) (1.76) (0.94) (-0.33) (3.08)
Carhart α -1.212*** -0.831*** -0.730*** -0.245* -0.301* -0.014 0.006 0.342* 0.186 -0.072 1.140***

(-6.77) (-4.50) (-4.17) (-1.78) (-1.76) (-0.09) (0.03) (1.78) (0.97) (-0.27) (3.00)
FF5 α -1.113*** -0.624*** -0.615*** -0.180 -0.352** 0.019 -0.019 0.323* 0.164 -0.016 1.098***

(-7.01) (-3.69) (-3.72) (-1.36) (-1.96) (0.11) (-0.09) (1.72) (0.85) (-0.06) (2.95)
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Table 13: Robustness: Chinese-specific asset pricing model

This table reports monthly excess returns and risk-adjusted returns for decile portfolios formed based on
the commodity tail risk beta (βMTail) estimated with respect to the China-specific asset pricing model
of Liu et al. (2019):

Et [Ri,t+1] = αi,t + βMTail
i,t ·MTailt + βFi,t ·Et [Ft+1] ,

where F is a vector of four China-specific equity risk factors: the market (MKTCH), size (SMBCH),
EP-based value (VMG), and turnover (PMO) factors. We follow Liu et al. (2019) to exclude stocks
in the bottom 30% of firm size cross-sectionally. Low (High) includes stocks with the lowest (highest)
βMTail at the end of the previous month. For each decile portfolio, we report the one-month ahead mean
excess returns (Ret-Rf). The last column shows the return spread (H-L) between taking long (short)
positions in the highest (lowest) βMTail portfolios. Risk-adjusted returns (αs) are based on the Fama-
French 3-factor (FF3), Carhart 4-factor (Carhart), Chinese 4-factor (CH4), and Fama-French 5-factor
(FF5) models. Panel A (B) summarizes equally- (value-) weighted portfolio results. The Newey & West
(1986) adjusted t-statistics are reported in parentheses and *, **, *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively. The sample period is from January 2005 to December 2021.

Panel A: Equal-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.363 -0.039 0.008 0.443 0.496 0.481 0.592 0.430 0.547 0.539 0.902***
(-0.54) (-0.06) (0.01) (0.65) (0.78) (0.75) (0.91) (0.66) (0.81) (0.82) (2.69)

FF3 α -1.215*** -0.939*** -0.889*** -0.455*** -0.398*** -0.419*** -0.310*** -0.468*** -0.366** -0.231 0.984***
(-6.70) (-6.42) (-7.54) (-3.15) (-3.42) (-4.15) (-2.62) (-3.56) (-2.55) (-0.94) (2.88)

Carhart α -1.204*** -0.926*** -0.874*** -0.419*** -0.348*** -0.387*** -0.267* -0.430*** -0.335** -0.218 0.986***
(-6.38) (-5.98) (-6.87) (-3.08) (-2.77) (-3.47) (-1.85) (-2.95) (-2.24) (-0.89) (2.89)

CH4 α -1.091*** -0.792*** -0.725*** -0.321** -0.310*** -0.268** -0.162 -0.327** -0.225 -0.065 1.027***
(-6.70) (-5.97) (-6.33) (-2.08) (-2.62) (-2.48) (-1.32) (-2.16) (-1.17) (-0.21) (2.65)

FF5 α -0.709*** -0.590*** -0.666*** -0.352** -0.313*** -0.248** -0.195 -0.310* -0.182 0.147 0.856**
(-3.48) (-3.84) (-4.47) (-2.50) (-2.76) (-2.12) (-1.48) (-1.95) (-1.11) (0.50) (2.01)

Panel B: Value-weighted portfolios
Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Ret-Rf -0.615 -0.212 -0.038 0.108 0.414 0.286 0.993 0.243 0.523 0.270 0.885**
(-0.92) (-0.35) (-0.07) (0.21) (0.79) (0.53) (1.61) (0.41) (0.85) (0.42) (2.20)

FF3 α -1.224*** -0.756*** -0.545*** -0.329* -0.011 -0.228 0.408** -0.283* -0.057 -0.159 1.065**
(-5.49) (-5.07) (-3.56) (-1.91) (-0.06) (-1.31) (1.96) (-1.85) (-0.28) (-0.55) (2.57)

Carhart α -1.255*** -0.740*** -0.525*** -0.303* 0.034 -0.190 0.457** -0.269* -0.040 -0.182 1.073***
(-5.43) (-4.83) (-3.47) (-1.91) (0.19) (-1.09) (2.03) (-1.70) (-0.18) (-0.67) (2.60)

CH4 α -0.916*** -0.644*** -0.650*** -0.768*** -0.310* -0.532*** 0.167 -0.357* -0.013 0.259 1.175**
(-3.20) (-3.62) (-3.31) (-4.09) (-1.70) (-2.75) (0.81) (-1.90) (-0.07) (0.83) (2.24)

FF5 α -1.169*** -0.756*** -0.471*** -0.336* -0.104 -0.234 0.525** -0.277* 0.009 -0.046 1.123**
(-5.44) (-5.19) (-3.04) (-1.92) (-0.59) (-1.31) (2.38) (-1.71) (0.04) (-0.14) (2.54)
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Table 14: Robustness: Institutional ownership

This table summarizes results for sequential bivariate portfolio analysis based on a stock’s institutional
ownership and its commodity tail risk beta (βMTail). We first sort stocks into quintile portfolios based on
their institutional ownership (InstOwn). Within each portfolio stocks are further allocated to quintiles
based on their βMTail. All portfolios are re-balanced monthly. For each portfolio we obtain one-month
ahead excess returns. The last column shows the return differential between long positions in the highest
βMTail stocks and short positions in the lowest βMTail stocks. Panel A (B) summarizes results for
equally-weighted (value-weighted) portfolios. The Newey &West (1986) adjusted t-statistics are reported
in parentheses, and *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
The sample period is from January 2005 to October 2022.

Panel A: Equally-weighted portfolios
Low βMTail 2 3 4 High βMTail High-Low

Low InstOwn -0.081 0.597 0.582 0.663 0.747 0.828***
(-0.13) (0.99) (0.88) (0.99) (1.03) (2.61)

2 -0.091 0.336 0.681 0.720 0.758 0.849***
(-0.14) (0.52) (1.06) (1.10) (1.11) (2.98)

3 -0.213 0.668 0.646 0.537 0.560 0.773**
(-0.36) (1.03) (1.01) (0.85) (0.84) (2.50)

4 0.049 0.631 0.658 0.724 0.661 0.611**
(0.08) (1.05) (1.04) (1.19) (1.00) (2.27)

High InstOwn 0.126 0.606 1.011* 0.850 0.624 0.498*
(0.22) (0.97) (1.78) (1.47) (1.09) (1.77)

Panel B: Value-weighted portfolios
Low βMTail 2 3 4 High βMTail High-Low

Low InstOwn -0.260 0.344 0.399 0.539 0.545 0.805***
(-0.41) (0.57) (0.60) (0.80) (0.77) (2.59)

2 -0.233 0.200 0.606 0.594 0.652 0.885***
(-0.37) (0.32) (0.95) (0.92) (0.97) (3.06)

3 -0.339 0.524 0.516 0.434 0.455 0.793**
(-0.57) (0.81) (0.82) (0.69) (0.68) (2.47)

4 -0.085 0.500 0.540 0.595 0.512 0.596**
(-0.14) (0.86) (0.87) (0.99) (0.78) (2.21)

High InstOwn 0.009 0.466 0.891 0.811 0.584 0.575**
(0.02) (0.75) (1.61) (1.43) (1.02) (2.00)
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Table 15: Robustness: Additional tests

This table summarizes results from a battery of additional robustness tests. In Panels A and B, we
consider two alternative models to estimate the monthly commodity tail risk beta (βMTail): Et [Ri,t+1] =

αi,t+βMTail
i,t ·MTailt+β

F
i,t ·Et [Ft+1] , where F is a set of equity risk factors. In specification (1), we set

F = [MKT, SMB,HML,RMW,CMA]. In specification (2), we set F = [MKT, SMB,HML,UMD, IML].
Panel C reports univariate portfolio analysis by excluding stocks in the bottom 30% of firm size cross-
sectionally, or in the ST/PT states, or in the finance industry. Panels D and E tabulate results when
a rolling window of 96 months and 120 months, respectively, are used to estimate βMTail. In terms
of the estimation methodology for MTail, Panels F and G report results when we consider alternative
thresholds p = 2.5% and p = 10% for left-tail events, respectively. High (low) includes stocks with the
highest (lowest) βMTail at the end of a month. For each decile portfolio, we report the one-month ahead
mean excess returns (Ret-Rf). The last column shows the high-minus-low (H-L) spread for portfolios
with long positions in the highest βMTail stocks and short positions in the lowest βMTail stocks. The risk-
adjusted returns based on the Carhart 4-factor and Fama-French 5-factor models are also reported. All
portfolios are value-weighted. The Newey & West (1986) adjusted t-statistics are reported in parentheses,
and *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample
period is from January 2005 to October 2022.

Low P2 P3 P4 P5 P6 P7 P8 P9 High H-L

Panel A: Alternative model specification (1)

Ret-Rf -0.212 0.174 0.367 0.415 0.614 0.450 0.529 0.518 0.555 0.604 0.816***
(-0.35) (0.30) (0.62) (0.70) (1.02) (0.73) (0.88) (0.83) (0.90) (0.94) (2.78)

Carhart α -0.881*** -0.541*** -0.388*** -0.358*** -0.146 -0.302*** -0.226* -0.241** -0.199 -0.003 0.878***
(-5.35) (-4.38) (-3.72) (-3.55) (-1.45) (-3.67) (-1.83) (-2.30) (-1.62) (-0.01) (2.96)

FF5 α -0.799*** -0.407*** -0.314** -0.223** -0.046 -0.217** -0.095 -0.146 -0.126 0.084 0.884***
(-5.59) (-4.10) (-2.46) (-2.32) (-0.42) (-2.09) (-0.84) (-1.26) (-0.92) (0.33) (2.70)

Panel B: Alternative model specification (2)

Ret-Rf -0.568 -0.042 0.039 0.169 -0.010 0.280 0.182 0.123 0.293 0.259 0.827**
(-0.91) (-0.07) (0.07) (0.29) (-0.02) (0.51) (0.35) (0.24) (0.51) (0.41) (2.24)

Carhart α -0.932*** -0.457** -0.327** -0.217 -0.334** -0.026 -0.140 -0.209 -0.050 0.018 0.949**
(-4.79) (-2.52) (-2.13) (-1.33) (-2.05) (-0.17) (-0.66) (-0.95) (-0.25) (0.07) (2.57)

FF5 α -0.933*** -0.424** -0.311** -0.198 -0.317* -0.105 -0.089 -0.170 0.011 0.110 1.043***
(-5.40) (-2.16) (-1.98) (-1.10) (-1.94) (-0.61) (-0.43) (-0.84) (0.05) (0.39) (2.78)

Panel C: Stocks in bottom 30%, ST/PT status, or finance industry excluded

Ret-Rf -0.698 -0.320 -0.135 -0.151 0.009 0.600 0.232 0.339 0.075 0.307 1.004**
(-1.09) (-0.56) (-0.24) (-0.29) (0.02) (1.10) (0.41) (0.60) (0.12) (0.48) (2.11)

Carhart α -1.053*** -0.809*** -0.574*** -0.530*** -0.353* 0.261 -0.051 0.089 -0.139 0.198 1.252**
(-4.11) (-4.24) (-3.54) (-3.39) (-1.85) (1.08) (-0.25) (0.47) (-0.51) (0.61) (2.41)

FF5 α -1.037*** -0.627*** -0.567*** -0.474*** -0.321 0.332 -0.116 0.104 -0.099 0.230 1.267**
(-4.68) (-3.35) (-3.39) (-2.88) (-1.61) (1.26) (-0.62) (0.62) (-0.37) (0.68) (2.54)

Panel D: Estimation window length = 96 months

Ret-Rf -0.354 -0.183 -0.216 0.183 0.414 0.464 0.926 0.946 0.741 0.591 0.945***
(-0.54) (-0.31) (-0.35) (0.30) (0.66) (0.81) (1.52) (1.63) (1.32) (0.98) (2.74)

Carhart α -0.783*** -0.621** -0.649** -0.363* -0.041 -0.054 0.356* 0.488*** 0.274 0.260 1.043***
(-2.89) (-2.44) (-2.56) (-1.71) (-0.18) (-0.25) (1.74) (2.91) (1.47) (1.29) (3.33)

FF5 α -0.757*** -0.600** -0.554** -0.262 0.013 0.103 0.384* 0.521*** 0.311* 0.280 1.037***
(-3.03) (-2.50) (-2.46) (-1.24) (0.06) (0.51) (1.86) (3.08) (1.75) (1.35) (3.53)

Panel E: Estimation window length = 120 months

Ret-Rf -0.598 -0.174 0.263 0.289 0.526 0.222 0.744 0.043 0.366 0.205 0.803**
(-0.82) (-0.26) (0.38) (0.42) (0.80) (0.33) (1.12) (0.06) (0.56) (0.28) (2.20)

Carhart α -0.739*** -0.475* -0.223 -0.134 -0.062 -0.195 0.133 -0.290 -0.043 -0.105 0.635***
(-2.67) (-1.72) (-0.96) (-0.61) (-0.25) (-0.84) (0.57) (-1.13) (-0.20) (-0.41) (2.81)

FF5 α -0.692** -0.372 -0.161 -0.082 0.018 -0.103 0.218 -0.173 -0.062 -0.023 0.668***
(-2.48) (-1.29) (-0.68) (-0.32) (0.07) (-0.45) (0.82) (-0.69) (-0.26) (-0.09) (2.76)

Panel F: The threshold for left-tail events = 2.5%

Ret-Rf -0.704 -0.524 -0.117 -0.092 0.323 0.363 -0.058 0.344 0.407 0.089 0.793**
(-1.16) (-0.93) (-0.22) (-0.17) (0.62) (0.73) (-0.10) (0.61) (0.69) (0.14) (1.96)

Carhart α -1.153*** -1.006*** -0.613*** -0.525*** -0.072 -0.030 -0.419** 0.067 0.184 -0.093 1.060**
(-4.49) (-5.37) (-3.77) (-3.21) (-0.51) (-0.21) (-2.41) (0.34) (0.99) (-0.33) (2.20)

FF5 α -1.111*** -1.008*** -0.502*** -0.504*** -0.023 -0.016 -0.405** 0.068 0.196 -0.061 1.050**
(-4.78) (-6.61) (-2.83) (-3.14) (-0.15) (-0.11) (-2.23) (0.37) (1.00) (-0.22) (2.28)

Panel G: The threshold for left-tail events = 10%

Ret-Rf -0.802 -0.315 -0.111 -0.011 0.050 0.251 0.262 0.278 0.328 0.124 0.926**
(-1.32) (-0.53) (-0.20) (-0.02) (0.09) (0.44) (0.46) (0.52) (0.57) (0.21) (2.40)

Carhart α -1.198*** -0.716*** -0.527*** -0.452*** -0.330** -0.175 -0.118 0.018 0.056 -0.200 0.997**
(-4.95) (-3.50) (-3.24) (-2.60) (-2.15) (-0.94) (-0.89) (0.10) (0.28) (-0.82) (2.28)

FF5 α -1.155*** -0.599*** -0.434*** -0.398** -0.334** -0.188 -0.118 -0.026 0.042 -0.143 1.012***
(-5.40) (-3.10) (-2.67) (-2.36) (-1.99) (-0.89) (-0.78) (-0.15) (0.23) (-0.62) (2.61)
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Table 16: Robustness: Industry-level evidence

In this table, we divide stocks into nine industries based on the CSRC industry code, including Mining,
Manufacturing, Retail & Wholesale, Transportation, IT, Finance, Real estate, Utilities, and Other.
Stocks in each industry are sorted into quartile portfolios based on the monthly commodity tail risk
beta (βMTail) and Low (High) portfolios include those with the lowest (highest) βMTail at the end of a
month. We report the one-month ahead mean excess returns, and H-L is the high-minus-low spread for
portfolios that take long positions in the highest βMTail stocks and short positions in the lowest βMTail

stocks. Risk-adjusted returns are computed for based on the Carhart 4-factor and Fama-French 5-factor
model (FF5) models. The Newey & West (1986) adjusted t-statistics are reported in parentheses, and
*, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The sample period
is from January 2005 to October 2022.

Low P2 P3 High H-L Carhart α FF5 α

Mining -0.737 0.452 -0.109 0.152 0.889** 0.896** 1.095**
(-1.07) (0.65) (-0.17) (0.21) (2.17) (2.29) (2.43)

Manufacturing 0.021 0.612 0.738 0.642 0.621** 0.613** 0.735***
(0.04) (0.99) (1.19) (1.00) (2.52) (2.57) (2.85)

Retail & Wholesale -0.570 0.275 0.736 0.303 0.873** 0.868** 0.828**
(-0.93) (0.45) (1.12) (0.44) (2.38) (2.29) (2.22)

Transportation -0.435 0.339 0.352 0.740 1.176** 1.113** 0.961***
(-0.75) (0.48) (0.50) (1.06) (2.45) (2.29) (2.76)

IT 0.455 0.893 1.211 1.411 0.956** 0.963** 0.940**
(0.47) (1.13) (1.52) (1.63) (2.14) (2.24) (1.99)

Finance -0.026 0.058 0.742 0.528 0.554** 0.590** 0.711***
(-0.03) (0.10) (1.10) (0.72) (1.98) (2.20) (2.84)

Real estate -0.163 0.471 0.317 0.348 0.511 0.438 0.383
(-0.26) (0.69) (0.49) (0.49) (1.46) (1.24) (1.12)

Utilities -0.122 0.550 0.344 0.208 0.330 0.434 0.211
(-0.19) (0.87) (0.61) (0.35) (0.93) (1.29) (0.74)

Other -0.001 0.066 0.375 0.586 0.587** 0.685** 0.710**
(0.00) (0.11) (0.60) (0.86) (2.06) (2.15) (2.14)
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Appendix A The multivariate tail risk estimation

Let rdi,s and xd1,s, . . . , x
d
N,s denote, respectively, the daily returns of asset i and N

systematic risk factors over the estimation period, containing the recent 250 trading days

(s = 1, . . . , 250). We collect these two groups of return series into a (N + 1) × 1 vector

(Y s)s=1,...,250 and assume that these N+1 marginal distributions follow the GARCH(1,1)

model of the form:

Yf,s = µf + σf,sUf,s, (A.1)

σ2
f,s = ωf,0 + ωf,1 (σf,s−1Uf,s−1)

2 + ωf,2σ
2
f,s−1, (A.2)

where f = 1, . . . , N + 1, Uf,s is the independent and identically distributed residuals,

and µf , ωf,0, ωf,1, ωf,2 ∈ R. To apply the maximum likelihood estimation method for

this model, we further restrict that ωf,0, ωf,1, ωf,2 > 0 and ωf,1 + ωf,2 < 1. Following

Christoffersen et al. (2012), we assume that the distribution of innovations follows the

skewed−t distribution of Hansen (1994). Hence, the conditional distribution of Uf,s

can be represented by parametric functions of Fs−1-measurable parameters, where Fs−1

represents the information set available at time s − 1 (Fan & Patton, 2014). Based on

this distributional assumption, the transformation of Uf,s is completed by the probability

integral transforms:

ûf,s = Ff,s (Uf,s) , ûf,s ∼ Uniform[0, 1], (A.3)

where ûf,s is the white-noise series and Ff,s denotes the conditional cumulative distribu-

tion functions (CDFs) of Uf,s.

With transformed marginal return series ûf,s and the copula approach, we non-

parametrically estimate the left-tail dependence structure between asset i and factor

returns, MTail, and rewrite Equation (1) as follows:

MTailXi,t =

∑
s∈D 1 ({û1,s ≤ q1}) · 1

(⋃N+1
j=2 {ûj,s ≤ qj}

)
∑

s∈D 1
(⋃N+1

j=2 {ûj,s ≤ qj}
) , (A.4)

where qf denotes the upper p-quantile of (ûf,s)s∈D, f = 1, . . . , N+1, and D is the number

of returns in valid trading days for all marginal series. In particular, the denominator
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of Equation (A.4) measures the sum of days in which a lower-tail event occurs for at

least one of these systematic risk factors over the rolling window estimation period. The

numerator indicates the total number of days on which asset i and one (or more) of risk

factors realize a left-tail event simultaneously over the rolling window estimation period.

Hence, a higher value of MTail indicates that the asset i has a higher crash sensitivity

under a multi-factor setting, and vice versa. We set p = 5% for calculating the qf in

Equation (A.4). Thus MTail captures the conditional probability of an extreme return

realization which is below or at the corresponding 5%-quantile of commodity i’s return

distribution given that at least one commodity factor realizes a return observation below

or at the 5%-quantile.

Appendix B Commodity risk factors

To construct the multivariate commodity tail risk measure, we adopt the three-factor

pricing model featuring the commodity market, basis, and momentum factor of Bakshi

et al. (2019), which nests the two-factor model of Yang (2013). We also include the

basis-momentum factor proposed by Boons & Prado (2019) to complete the factor space.

We use portfolio sorting and systematic long-short strategies to construct these factors in

Chinese futures markets. In particular, at the month end, we sort all commodities into

five quintile portfolios based on different pricing characteristics, and take long (short)

positions in commodities quintile portfolios predicted to appreciate (depreciate) in the

following month. All portfolios are equally-weighted and re-balanced monthly with up-

dated pricing signals.

Commodity market (CMKT): Bakshi et al. (2019) find that a model without

featuring an average factor fails to explain the time-series variation in commodity futures

returns. The commodity market factor (CMKT) is obtained as the long-only equally-

weighted cross-sectional average of all available commodity contracts at time t.

Term structure (Basis): The basis in commodity markets is defined as the price

difference between spot and different-maturity contracts. Following Fuertes et al. (2010),

Xu & Wang (2021), and Yang (2013), we apply the roll-yield to measure the slope of the
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futures curve of commodity k at time t as follows:

Basisk,t = log
(
P

(3)
k,t

)
− log

(
P

(4)
k,t

)
, (A.5)

where P
(3)
k,t and P

(4)
k,t are prices for the third-nearest and fourth-nearest contracts for

commodity k at time t, respectively. The term structure (basis) strategy buys (sells)

contracts with the highest (lowest) roll-yield sorted quintile portfolios.

Commodity momentum (CMOM): The momentum effect emerges from the re-

lation between an asset’s current returns and its recent performance history (Asness et

al., 2013). Specifically, we use the prior twelve months as the formation period for each

commodity futures to construct the commodity momentum factor as follows:

CMOMk,t =

(
1

12

) 11∑
j=0

rk,t−j, (A.6)

where rk,t−j represents returns to the third-nearest contracts of commodity k in month

t−j. Based on this CMOMk,t signal, we first sort commodities into quintile portfolios at

the end of month t. We buy (sell) portfolios containing past winners (losers) and hold this

long-short portfolio for one month. We also follow Bakshi et al. (2019) to use cumulative

futures returns in past twelve months and construct the characteristic as follows:

CMOMCum
k,t =

11∏
j=0

(1 + rk,t−j)− 1. (A.7)

Empirical results from using alternative momentum formation procedures are qualita-

tively the same.

Basis-Momentum (Basis-Mom): To capture the slope and curvature of the futures

term structure, Boons & Prado (2019) find that the basis-momentum as a new return

predictor outperforms other characteristics in predicting commodity futures returns. The

economic rationale of basis-momentum is based on the impaired market-clearing ability

of speculators and financial intermediaries. Combining the basis and momentum factors,

the basis-momentum (Basis-Mom) is defined as the difference between momentum in

third- and fourth-nearby futures contracts:

Basis-Momk,t =
11∏
j=0

(
1 + r

(3)
k,t−j

)
−

11∏
j=0

(
1 + r

(4)
k,t−j

)
, (A.8)
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where r(3)k,t−j and r
(4)
k,t−j represent the third- and fourth-nearest contract returns of com-

modity k in month t− j. The Basis-Mom factor is constructed by taking a long (short)

position in commodities with high (low) basis-momentum characteristics.

Appendix C Firm-level variables

In this appendix, we define the firm-level variables used in the empirical analysis.

Firm size (Size): Fama & French (1992) find that the firm size significantly impacts

the stock’s expected returns. We compute the firm size as the natural logarithm of the

market value of equity (in 100 million of RMB) at the end of each month.

Book-to-market ratio (BM): Following Liu et al. (2019), we calculate the book-

to-market ratio as the book value of common equity (total shareholders’ equity excluding

minority interests) divided by the market value of equity (daily close price multiplied by

the total shares outstanding). In particular, at the end of June in each calendar year,

we estimate the BM ratio as total shareholders’ equity for the fiscal year ending in last

calendar year divided by the market equity at the end of December in the previous year.

We assume that the book value of shareholder equity is available six-month later for each

fiscal year.

Momentum (MOM): We follow Jegadeesh & Titman (1993) to construct the mo-

mentum factor as a stock’s cumulative returns during the past 11-month period after

skipping one month, controlling for the medium-term momentum effect. We calculate

the momentum in month t as the cumulative returns of a stock over the 11-month period

ending one month before the portfolio formation month, i.e., from month t− 12 to t− 1.

Market beta (Beta): Following Fama & French (1992), we estimate the market

beta for each individual stock via the following regression:

Ri,d = αi + β1,iMKTd + εi,d, (A.9)

where Ri,d is the excess daily returns of stock i on day d, and MKTd is the daily market

factor. In particular, at the end of each month, we estimate the market beta with daily

returns over the prior twelve months from month t− 11 to month t.

Reversal (REV): We follow Jegadeesh (1990) to define the reversal for each stock
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as the excess stock returns over the previous month.

Growth of assets (IA): Cooper et al. (2008) find that firms with a higher growth

rate of total assets earn lower future returns. We define the investment-to-asset ratio as

the annual growth rate of total assets. In particular, at the end of June in year t, we

calculate the change in total book asset from the fiscal year ending in two years before

(year t− 2) to the prior fiscal year (year t− 1) divided by the lagged total book assets.

Return-on-equity (ROE): Following Liu et al. (2019), we define the return-on-

equity ratio as the net profit excluding non-recurring gains and losses divided by the

total shareholders’ equity excluding minority interests. In particular, at the end of each

month, we compute the ROE ratio as the quarterly net profit excluding non-recurring

gains and losses divided by the one-quarter-lagged book value of equity.

Co-skewness (Coskew): Harvey & Siddique (2000) find that systematic (condi-

tional) skewness explains the cross-section of expected stock returns and commands a

risk premium. We define the Coskew as the monthly co-skewness of monthly excess

returns of each stock i with monthly excess market returns in month t as follows:

Coskewi,t =
E
[
εi,tR

2
m,t

]√
E
[
ε2i,t
]
E
[
R2
m,t

] , (A.10)

where εi,t = Ri,t − (αi + βiRm,t) is the residual term from regressing the stock’s monthly

excess returns (Ri,t) on the monthly contemporaneous excess market returns (Rm,t) over

the prior five years.

Illiquidity (ILLIQ): Amihud (2002) finds that illiquid stocks command an expected

return premium. We calculate a stock’s illiquidity in month t as follows:

ILLIQi,t = Mean

[
|Ri,d|

Volumei,d

]
, (A.11)

where |Ri,d| is stock i’s absolute return on day d and V olumei,d is the stock’s dollar

trading volume on the same day. To calculate the monthly ILLIQi,t, we take the average

of the daily illiquidity ratio within the month t. The Amihud (2002)’s ILLIQ measure is

scaled by 106.

Turnover (TURN): Following Liu et al. (2019), we measure the turnover as the

average daily share turnover over the past twelve months for each month. A stock’s daily
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turnover is computed as the daily trading volume divided by the total shares outstanding.

Lottery demand (MAX): Following Bali et al. (2011), we measure the demands

for lottery stocks using the maximum daily returns (MAX) in a given month. Because of

the price limit rule in Chinese stock markets, the prices of each stock can only change by

a maximum of 10% from the last closing price in a single trading day. Hence, we follow

Bali et al. (2017) and Hou et al. (2023) to compute the maximum daily returns as the

average of the five highest daily returns of stock i in the given month t.

Idiosyncratic volatility (IVOL): Ang, Hodrick, et al. (2006) document a negative

relationship between stock’s expected returns and the idiosyncratic volatility. We define

the idiosyncratic volatility of stock i on day d in month t as the standard deviation of

daily residual returns in one month from the following regression:

Ri,d = αi + β1,iMKTd + β2,iSMBd + β3,iHMLd + εi,d, (A.12)

where Ri,d is the excess daily returns of stock i on day d, εi,d is the daily residuals,MKTd,

SMBd, and HMLd are the daily market, size, and value factors. The IVOL of stock i in

month t is computed as follows:

IVOLi,t =
√

Var (εi,d). (A.13)

Value-at-Risk (VaR): Following Atilgan et al. (2020), we use the Value-at-Risk

(VaR) to measure the equity left-tail risk. In particular, as the end of month t, the VaR

is estimated as the 5th percentile of the daily stock returns over the past one year. We

multiply this measure by −1 for the ease of interpretation. Thereby, higher values of VaR

indicate greater levels of equity left-tail risk. Moreover, we also consider the Expected

Shortfall (ES) as an alternative proxy for the equity tail risk. We calculate the ES as the

average of daily observations that are smaller than or equal to the 5th percentile of the

daily returns for each stock during the past year. We find that the empirical results from

using this alternative measure of the equity tail risk are qualitatively the same.
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Table A.1: Summary statistics for commodity futures

This table summarizes descriptive statistics of third-nearest contracts across 65 commodities traded in
the Chinese futures markets. We categorize all commodities into three sectors: grains, agriculture, &
oilseeds, metals, and energies & industrial materials. Annualized average returns, standard deviation,
skewness (Skew), kurtosis (Kurt), maximum (Max), minimum (Min), first-order autocorrelation (ρ(1)),
volume, i.e., the average number of contracts (lots) traded per month, open interest (OI), i.e., the average
number of daily open interest (lots) per month, the start month (Start), and the number of valid trading
months (Obs) of each commodity futures contract are reported. The sample period is from January 2003
to October 2022.

Sectors Contracts Code Mean SD Skew Kurt Max Min ρ(1) Volume OI Start Obs

Grains,
Agriculture,
& Oilseeds

No.1 Soybean A 0.06 0.16 0.13 4.62 0.16 -0.18 0.08 83692 94836 200301 238
Apple AP 0.03 0.28 0.17 3.61 0.19 -0.24 0.10 68808 46402 201712 59
No.2 Soybean B 0.06 0.16 -0.42 4.19 0.12 -0.19 0.01 4158 3997 200412 215
Corn C 0.01 0.10 -0.15 3.14 0.08 -0.08 0.13 141084 302845 200409 218
Cornstarch CS 0.02 0.15 -0.09 3.24 0.11 -0.12 0.06 64628 89750 201412 95
Egg JD -0.11 0.21 -0.65 4.63 0.15 -0.21 0.07 54451 52967 201311 108
Japonica Rice JR -0.04 0.15 0.92 6.34 0.19 -0.11 -0.21 3 21 201311 108
Late Rice LR -0.04 0.15 -3.08 21.39 0.07 -0.29 0.06 129 218 201407 100
Common Wheat PM -0.01 0.11 0.84 5.08 0.11 -0.07 -0.15 2 11 201201 130
Early Rice RI -0.03 0.11 0.58 5.28 0.13 -0.10 -0.09 11929 11082 200904 163
Sugar SR -0.02 0.19 0.55 6.88 0.27 -0.18 -0.01 271596 219919 200601 202
Strong Wheat WH -0.06 0.11 -0.64 6.18 0.11 -0.17 -0.05 25996 37764 200303 236
Hard Wheat WT -0.05 0.11 0.61 10.91 0.16 -0.12 0.08 8594 14233 200301 118
Jujube CJ -0.01 0.26 0.98 5.90 0.25 -0.19 0.02 11701 11540 201904 43
Peanut Kernel PK -0.03 0.18 0.05 2.39 0.10 -0.10 -0.23 21448 20794 202102 21
Polished Rice RR -0.08 0.08 -1.68 9.86 0.04 -0.11 -0.16 4462 7002 201908 39
Live Hog LH -0.14 0.30 -0.77 3.64 0.14 -0.25 -0.04 4721 16907 202101 22
Soybean Meal M 0.11 0.20 0.19 3.78 0.19 -0.21 0.10 370395 457049 200301 238
Rapeseed Oil OI 0.02 0.21 -0.53 9.50 0.29 -0.30 0.13 49824 69742 200706 185
Palm Olein P 0.03 0.27 -0.68 6.07 0.22 -0.38 0.26 109546 84955 200710 181
Rapeseed Meal RM 0.11 0.20 0.20 2.88 0.16 -0.12 0.06 405228 236322 201212 119
Rapeseed RS 0.01 0.14 -1.45 11.44 0.11 -0.23 0.29 2198 1092 201212 119
Soybean Oil Y 0.03 0.21 -0.53 6.80 0.25 -0.27 0.08 165414 184756 200601 202

Metals

Silver AG -0.06 0.24 0.12 5.23 0.25 -0.23 -0.05 188691 109142 201205 126
Aluminum AL 0.00 0.16 -0.13 4.32 0.15 -0.14 0.15 45161 80749 200301 238
Gold AU 0.03 0.17 -0.50 5.03 0.12 -0.21 -0.14 38278 48410 200801 178
Copper CU 0.11 0.26 -1.40 13.41 0.29 -0.53 0.14 115902 109583 200301 238
Iron Ore I 0.21 0.36 -0.23 2.97 0.27 -0.28 0.01 342179 280448 201310 109
Nickel NI 0.08 0.25 -0.31 2.72 0.18 -0.19 0.10 188442 99090 201503 92
Lead PB -0.01 0.17 0.44 7.92 0.25 -0.19 -0.09 3261 6878 201103 140
Steel Rebar RB 0.04 0.23 -0.14 3.69 0.19 -0.24 0.02 567205 419114 200903 164
Ferrosilicon SF 0.02 0.36 -0.56 10.33 0.43 -0.43 -0.15 33170 28507 201408 99
Silicon Manganese SM 0.11 0.31 0.28 5.85 0.34 -0.29 0.07 31799 30328 201408 99
Tin SN 0.05 0.22 -1.04 6.33 0.13 -0.27 0.36 7264 7514 201503 92
Wire Rod WR 0.04 0.20 0.55 5.82 0.25 -0.17 -0.04 332 515 200903 163
Zinc ZN -0.01 0.25 -1.84 12.74 0.18 -0.47 0.00 128257 93259 200703 188
Copper Cathode CU 0.09 0.22 0.44 4.14 0.18 -0.13 -0.17 5412 4753 202011 24
Stainless Steel SS 0.12 0.24 0.42 2.62 0.18 -0.10 0.07 12914 19639 201909 38

(Continued next page.)
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Sectors Contracts Code Mean SD Skew Kurt Max Min ρ(1) Volume OI Start Obs

Energies &
Industrial
materials

Fuel Oil FU -0.01 0.30 -1.14 9.00 0.31 -0.51 0.21 100626 43764 200408 219
Methanol MA -0.06 0.27 -0.66 5.49 0.23 -0.32 0.01 294500 187156 201110 133
Crude Oil SC 0.09 0.35 -1.14 4.84 0.18 -0.35 0.28 19678 13734 201803 56
Plywood BB -0.04 0.32 -1.75 10.51 0.20 -0.49 0.03 1841 1218 201312 107
Bitumen BU -0.08 0.31 -0.74 6.22 0.21 -0.42 0.07 149114 108889 201310 109
Cotton CF -0.05 0.20 0.22 6.71 0.26 -0.26 0.10 103438 108522 200406 221
Cotton Yarn CY -0.06 0.20 0.21 2.99 0.15 -0.13 -0.12 1850 1536 201708 63
Fiberboard FB 0.01 0.31 0.51 6.96 0.33 -0.36 0.00 1657 1843 201312 106
Flat Glass FG 0.06 0.24 0.14 5.04 0.28 -0.21 0.06 150575 97709 201212 119
Hot-Rolled Coil HC 0.10 0.25 -0.07 2.88 0.19 -0.21 0.11 102061 116781 201403 104
Coke J 0.05 0.33 0.38 3.90 0.31 -0.25 0.09 66972 43885 201104 139
Coking Coal JM 0.13 0.33 0.06 3.94 0.25 -0.30 0.15 66143 51783 201303 116
LLDPE L 0.00 0.26 -2.90 24.70 0.18 -0.60 -0.02 118981 87515 200707 184
Polypropylene PP 0.05 0.22 0.47 4.01 0.19 -0.17 -0.09 144476 122193 201402 105
Natural Rubber RU -0.06 0.31 -0.23 4.22 0.27 -0.40 0.13 151138 68383 200301 238
PTA TA -0.03 0.27 -0.89 9.54 0.30 -0.45 0.14 248115 236976 200612 191
PVC V 0.01 0.21 -0.01 6.53 0.26 -0.26 0.03 61461 54009 200905 162
Thermal Coal ZC 0.12 0.27 0.72 10.74 0.42 -0.31 0.00 52925 51593 201309 110
Liquefied Petroleum Gas PG 0.37 0.34 -0.14 3.38 0.26 -0.22 -0.06 9098 13301 202003 32
Low Sulfur Fuel Oil LU 0.35 0.31 -0.40 2.55 0.17 -0.17 0.01 45352 48985 202006 29
Polyester Staple Fiber PF 0.07 0.26 0.42 4.70 0.23 -0.17 -0.28 56068 68712 202010 25
Urea UR 0.17 0.28 -0.19 3.13 0.20 -0.17 -0.13 28666 22658 201908 39
TSR 20 NR -0.10 0.24 -0.11 3.26 0.16 -0.17 -0.08 10048 18554 201908 39
Ethenylbenzene EB 0.09 0.40 -0.92 7.38 0.30 -0.43 -0.12 25409 24245 201909 38
Ethylene Glycol EG -0.11 0.33 -0.30 5.08 0.24 -0.34 -0.17 104916 81921 201812 47
Softwood Kraft Pulp SP 0.04 0.22 0.09 3.19 0.15 -0.15 0.18 63756 59454 201811 48
Soda Ash SA 0.07 0.35 0.53 3.24 0.24 -0.19 -0.10 167383 92395 201912 35
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